You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_select_op.py

86 lines
2.7 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.select = P.Select()
def construct(self, cond_op, input_x, input_y):
return self.select(cond_op, input_x, input_y)
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_select_float32():
cond = np.array([[True, False], [True, False]]).astype(np.bool)
x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
y = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
select = Net()
output = select(Tensor(cond), Tensor(x), Tensor(y))
print(output.asnumpy())
expect = [[1.2, 2], [1, 4.0]]
error = np.ones(shape=[2, 2]) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_select_float16():
cond = np.array([[True, False], [True, False]]).astype(np.bool)
x = np.array([[1.2, 1], [1, 0]]).astype(np.float16)
y = np.array([[1, 2], [3, 4.0]]).astype(np.float16)
select = Net()
output = select(Tensor(cond), Tensor(x), Tensor(y))
print(output.asnumpy())
expect = [[1.2, 2], [1, 4.0]]
error = np.ones(shape=[2, 2]) * 1.0e-3
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_select_int32():
cond = np.array([[True, False], [True, False]]).astype(np.bool)
x = np.array([[12, 1], [1, 0]]).astype(np.int32)
y = np.array([[1, 2], [3, 4]]).astype(np.int32)
select = Net()
output = select(Tensor(cond), Tensor(x), Tensor(y))
print(output.asnumpy())
expect = [[12, 2], [1, 4]]
error = np.ones(shape=[2, 2]) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)