You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_tensor_string.py

196 lines
6.4 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import mindspore._c_dataengine as cde
import numpy as np
import pytest
from mindspore.dataset.text import to_str, to_bytes
import mindspore.dataset as ds
import mindspore.common.dtype as mstype
# pylint: disable=comparison-with-itself
def test_basic():
x = np.array([["ab", "cde", "121"], ["x", "km", "789"]], dtype='S')
n = cde.Tensor(x)
arr = n.as_array()
np.testing.assert_array_equal(x, arr)
def compare(strings):
arr = np.array(strings, dtype='S')
def gen():
yield arr,
data = ds.GeneratorDataset(gen, column_names=["col"])
for d in data:
np.testing.assert_array_equal(d[0], arr)
def test_generator():
compare(["ab"])
compare(["ab", "cde", "121"])
compare([["ab", "cde", "121"], ["x", "km", "789"]])
def test_batching_strings():
def gen():
yield np.array(["ab", "cde", "121"], dtype='S'),
data = ds.GeneratorDataset(gen, column_names=["col"]).batch(10)
with pytest.raises(RuntimeError) as info:
for _ in data:
pass
assert "[Batch ERROR] Batch does not support" in str(info.value)
def test_map():
def gen():
yield np.array(["ab cde 121"], dtype='S'),
data = ds.GeneratorDataset(gen, column_names=["col"])
def split(b):
s = to_str(b)
splits = s.item().split()
return np.array(splits, dtype='S')
data = data.map(input_columns=["col"], operations=split)
expected = np.array(["ab", "cde", "121"], dtype='S')
for d in data:
np.testing.assert_array_equal(d[0], expected)
def test_map2():
def gen():
yield np.array(["ab cde 121"], dtype='S'),
data = ds.GeneratorDataset(gen, column_names=["col"])
def upper(b):
out = np.char.upper(b)
return out
data = data.map(input_columns=["col"], operations=upper)
expected = np.array(["AB CDE 121"], dtype='S')
for d in data:
np.testing.assert_array_equal(d[0], expected)
line = np.array(["This is a text file.",
"Be happy every day.",
"Good luck to everyone."])
words = np.array([["This", "text", "file", "a"],
["Be", "happy", "day", "b"],
["", "", "everyone", "c"]])
chinese = np.array(["今天天气太好了我们一起去外面玩吧",
"男默女泪",
"江州市长江大桥参加了长江大桥的通车仪式"])
def test_tfrecord1():
s = ds.Schema()
s.add_column("line", "string", [])
s.add_column("words", "string", [-1])
s.add_column("chinese", "string", [])
data = ds.TFRecordDataset("../data/dataset/testTextTFRecord/text.tfrecord", shuffle=False, schema=s)
for i, d in enumerate(data.create_dict_iterator()):
assert d["line"].shape == line[i].shape
assert d["words"].shape == words[i].shape
assert d["chinese"].shape == chinese[i].shape
np.testing.assert_array_equal(line[i], to_str(d["line"]))
np.testing.assert_array_equal(words[i], to_str(d["words"]))
np.testing.assert_array_equal(chinese[i], to_str(d["chinese"]))
def test_tfrecord2():
data = ds.TFRecordDataset("../data/dataset/testTextTFRecord/text.tfrecord", shuffle=False,
schema='../data/dataset/testTextTFRecord/datasetSchema.json')
for i, d in enumerate(data.create_dict_iterator()):
assert d["line"].shape == line[i].shape
assert d["words"].shape == words[i].shape
assert d["chinese"].shape == chinese[i].shape
np.testing.assert_array_equal(line[i], to_str(d["line"]))
np.testing.assert_array_equal(words[i], to_str(d["words"]))
np.testing.assert_array_equal(chinese[i], to_str(d["chinese"]))
def test_tfrecord3():
s = ds.Schema()
s.add_column("line", mstype.string, [])
s.add_column("words", mstype.string, [-1, 2])
s.add_column("chinese", mstype.string, [])
data = ds.TFRecordDataset("../data/dataset/testTextTFRecord/text.tfrecord", shuffle=False, schema=s)
for i, d in enumerate(data.create_dict_iterator()):
assert d["line"].shape == line[i].shape
assert d["words"].shape == words[i].reshape([2, 2]).shape
assert d["chinese"].shape == chinese[i].shape
np.testing.assert_array_equal(line[i], to_str(d["line"]))
np.testing.assert_array_equal(words[i].reshape([2, 2]), to_str(d["words"]))
np.testing.assert_array_equal(chinese[i], to_str(d["chinese"]))
def create_text_mindrecord():
# methood to create mindrecord with string data, used to generate testTextMindRecord/test.mindrecord
from mindspore.mindrecord import FileWriter
mindrecord_file_name = "test.mindrecord"
data = [{"english": "This is a text file.",
"chinese": "今天天气太好了我们一起去外面玩吧"},
{"english": "Be happy every day.",
"chinese": "男默女泪"},
{"english": "Good luck to everyone.",
"chinese": "江州市长江大桥参加了长江大桥的通车仪式"},
]
writer = FileWriter(mindrecord_file_name)
schema = {"english": {"type": "string"},
"chinese": {"type": "string"},
}
writer.add_schema(schema)
writer.write_raw_data(data)
writer.commit()
def test_mindrecord():
data = ds.MindDataset("../data/dataset/testTextMindRecord/test.mindrecord", shuffle=False)
for i, d in enumerate(data.create_dict_iterator()):
assert d["english"].shape == line[i].shape
assert d["chinese"].shape == chinese[i].shape
np.testing.assert_array_equal(line[i], to_str(d["english"]))
np.testing.assert_array_equal(chinese[i], to_str(d["chinese"]))
if __name__ == '__main__':
test_generator()
test_basic()
test_batching_strings()
test_map()
test_map2()
test_tfrecord1()
test_tfrecord2()
test_tfrecord3()
test_mindrecord()