You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/ops/test_tensor_slice.py

404 lines
13 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_tensor_slice """
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import context
from mindspore import dtype as mstype
from mindspore.nn import Cell
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
class NetWorkSlicePositive(Cell):
def __init__(self):
super(NetWorkSlicePositive, self).__init__()
self.tensor_ret0 = Tensor(np.ones([1, 2, 2], np.int32))
self.tensor_ret1 = Tensor(np.ones([4, 7, 4], np.int32))
self.tensor_ret2 = Tensor(np.ones([6, 8, 10], np.int32))
self.tensor_ret3 = Tensor(np.ones([3, 8, 10], np.int32))
def construct(self, tensor):
ret0 = tensor[3:4:3, 1:5:2, 3:6:2] + self.tensor_ret0
ret1 = tensor[-6:4:1, 7:-8:-1, ::3] + self.tensor_ret1
ret2 = tensor[::, ::, ::] + self.tensor_ret2
ret3 = tensor[::2] + self.tensor_ret3
return ret0, ret1, ret2, ret3
class NetWorkSliceEllipsis(Cell):
def __init__(self):
super(NetWorkSliceEllipsis, self).__init__()
self.tensor_ret0 = Tensor(np.ones([2, 7, 8], np.int32))
self.tensor_ret1 = Tensor(np.ones([6, 7, 8, 9], np.int32))
self.tensor_ret2 = Tensor(np.ones([1, 6, 7, 8, 9], np.int32))
def construct(self, tensor):
ret0 = tensor[0:4:2, ..., 1] + self.tensor_ret0
ret1 = tensor[...] + self.tensor_ret1
ret2 = tensor[None] + self.tensor_ret2
ret3 = tensor[True] + self.tensor_ret2
return ret0, ret1, ret2, ret3
class NetWorkReduceDimension(Cell):
def __init__(self):
super(NetWorkReduceDimension, self).__init__()
self.tensor_ret0 = Tensor(np.ones([2, 4, 1], np.int32))
self.tensor_ret1 = Tensor(np.ones([3, 4], np.int32))
self.tensor_ret2 = Tensor(np.ones([6, 8], np.int32))
self.tensor_ret3 = Tensor(np.array(8, np.int32))
self.tensor_ret4 = Tensor(np.ones([8, 10], np.int32))
def construct(self, tensor):
ret0 = tensor[0:6:3, 1:5:1, 3:5:2] + self.tensor_ret0
ret1 = tensor[::2, 1, ::3] + self.tensor_ret1
ret2 = tensor[::, ::, 0] + self.tensor_ret2
ret3 = tensor[3, 2, 5] + self.tensor_ret3
ret4 = tensor[1] + self.tensor_ret4
return ret0, ret1, ret2, ret3, ret4
class NetWorkStepNegative(Cell):
def __init__(self):
super(NetWorkStepNegative, self).__init__()
self.tensor_ret = Tensor(np.ones([6, 5, 10], np.int32))
def construct(self, tensor):
ret = tensor[::1, -5::, ::-1] + self.tensor_ret
return ret
class NetWorkReduceToScalar(Cell):
def __init__(self):
super(NetWorkReduceToScalar, self).__init__()
self.tensor_ret = Tensor(np.array(9, np.int32))
def construct(self, tensor):
ret = tensor[2, 3, 4] + self.tensor_ret
return ret
class TensorAssignWithSliceError1(Cell):
def __init__(self):
super(TensorAssignWithSliceError1, self).__init__()
def construct(self, a, b):
a[1:3:-1,::] = b
return a
class TensorAssignWithSliceError2(Cell):
def __init__(self):
super(TensorAssignWithSliceError2, self).__init__()
def construct(self, a, b):
a[1:3:-1] = b
return a
class TensorAssignWithSlice2(Cell):
def __init__(self):
super(TensorAssignWithSlice2, self).__init__()
def construct(self, a, b):
a[1:5] = b
a[3:4] = 5
a[-1:1:-1] = b
a[-1:3:-1] = 5
a[::] = b
a[::] = 9
return a
class TensorAssignWithSlice(Cell):
def __init__(self):
super(TensorAssignWithSlice, self).__init__()
self.c = 2
def construct(self, a, b):
a[1:3,::] = b
a[2:3:,3:] = b
a[::] = b
a[::] = self.c
a[::,::] = b
a[::,::] = self.c
a[2:3:,0:, 4:1:-1] = b
a[2:3:,0:, 4:1:-1] = self.c
z = a
return z
def test_tensor_assign():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
net = TensorAssignWithSlice()
net2= TensorAssignWithSlice2()
net_e1 = TensorAssignWithSliceError1()
net_e2 = TensorAssignWithSliceError2()
a = np.arange(60).reshape(3,4,5)
b = Tensor([1])
Ta = Tensor(a)
Ta4d = Tensor(a.reshape(1,3,4,5))
Tb= Tensor([1,3])
Tc= Tensor([])
t = Tensor([1, 2, 3, 4, 5, 6, 7, 8])
net(Ta, b)
net2(t, b)
# Error for A[Slice] = Number
# 1. A[Slice] = Number, Slice error
with pytest.raises(ValueError):
net_e2(t, 2)
# Error for A[Slice] = U, U is a Tensor
# 1. A[Slice] = U, u.size is error
with pytest.raises(ValueError):
net2(t, Tb)
# 2. A[Slice] = U, U is empty
with pytest.raises(ValueError):
net2(t, Tc)
# 3. A[Slice] = U, U.size error
with pytest.raises(ValueError):
net2(t, Tb)
# Error for A[Tuple(Slice...)] = Tensor
# 1. A[Tuple(Slice...)] = U, U is empty
with pytest.raises(ValueError):
net(Ta, Tc)
# 2. A[Tuple(Slice...)] = U, U.size error
with pytest.raises(ValueError):
net(Ta, Tb)
# 3. A[Tuple(Slice...)] = U, Slice error
with pytest.raises(ValueError):
net_e1(Ta, b)
# Error for A[Tuple(Slice...)] = Number
# 1. A[Tuple(Slice...)] = Number, Slice error
with pytest.raises(ValueError):
net_e1(Ta, 2)
net = TensorAssignWithInteger()
# Error for A[Number] = scalar/Tensor
# 1. A[Number] = U, U is a Tensor, u.size not match
with pytest.raises(ValueError):
net(Ta, Tb)
with pytest.raises(ValueError):
net(Ta, Tc)
# 2. A[Number] = U, the number index error
with pytest.raises(IndexError):
net(Ta4d, b)
# Error for A[(n,m)] = scalar/Tensor
# 1. A[(n,m)] = U, U is a tensor. u.size not match
net = TensorAssignWithTupleInteger()
with pytest.raises(ValueError):
net(Ta, Tc)
with pytest.raises(ValueError):
net(Ta, Tb)
# 2. A[(n,m)] = U, the number index error
with pytest.raises(IndexError):
net(Ta4d, b)
class TensorAssignWithInteger(Cell):
def __init__(self):
super(TensorAssignWithInteger, self).__init__()
def construct(self, a, b):
a[1] = 1
a[0] = b
return a
class TensorAssignWithTupleInteger(Cell):
def __init__(self):
super(TensorAssignWithTupleInteger, self).__init__()
def construct(self, a, b):
a[(1)] = 1
a[(1)] = b
a[(1,1)] = b
a[(1,1)] = 1
return a
class TensorAssignWithBoolTensorIndex(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndex, self).__init__()
self.t = Tensor(np.arange(60).reshape([3,4,5]), dtype = mstype.float64)
def construct(self, a, b, c, u_tensor, _scalar):
a[c] = u_scalar
a[b] = u_tensor
z = a + self.t
return z
class TensorAssignWithBoolTensorIndexError(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndexError, self).__init__()
def construct(self, a, b, c, u_tensor):
a[b][c] = u_tensor
return a
class TensorAssignWithBoolTensorIndex2(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndex2, self).__init__()
self.t = Tensor(np.arange(6).reshape([2, 3]), dtype=mstype.float64)
self.t = Tensor(np.arange(60).reshape([3,4,5]), dtype = mstype.float64)
def construct(self, a, u_tensor, _scalar):
a[a > 8] = u_tensor
a[a >= 6] = u_scalar
a[a < 3] = u_scalar
a[a <= 5] = u_tensor
a[a == 5] = u_scalar
z = a + self.t
return z
class TensorAssignWithBoolTensorIndex2Error(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndex2Error, self).__init__()
def construct(self, a, u_tensor):
a[a > 8][a > 5] = u_tensor
return a
a = np.random.uniform(1,10,[3,4,5])
b = a > 5
c = a < 3
Ta = Tensor(a)
Tb = Tensor(b)
Tc = Tensor(c)
Td = Tensor([True, True])
u_tensor = Tensor([1])
u_tensor_error = Tensor([1, 2])
t_1d = Tensor([1, 2, 3, 4, 5, 6, 7, 8])
u_scalar = 5
def test_tensor_assign_bool_index():
net1 = TensorAssignWithBoolTensorIndex()
net2 = TensorAssignWithBoolTensorIndex2()
net1(Ta, Tb, Tc, u_tensor, u_scalar)
net1(Ta, Tb, Tc, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, Td, Tc, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, u_tensor, Tc, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, Tb, Td, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, Tb, Ta, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, Tb, Tc, u_tensor_error, u_scalar)
# net1(Ta, u_tensor, Tc, u_tensor_error, u_scalar)
with pytest.raises(ValueError):
net2(Ta, u_tensor_error, u_scalar)
net3 = TensorAssignWithBoolTensorIndexError()
with pytest.raises(AttributeError):
net3(Ta, Tb, Tc, u_tensor)
with pytest.raises(AttributeError):
net3(Ta, Tb, Tc, u_scalar)
net4 = TensorAssignWithBoolTensorIndex2Error()
with pytest.raises(AttributeError):
net4(Ta, u_tensor)
with pytest.raises(AttributeError):
net4(Ta, u_scalar)
test_cases = [
('TensorAssignWithTupleInteger', {
'block': TensorAssignWithTupleInteger(),
'desc_inputs': [Ta, u_tensor],
}),
('TensorAssignWithInteger', {
'block': TensorAssignWithInteger(),
'desc_inputs': [Ta, u_tensor],
}),
('TensorAssignWithSlice', {
'block': TensorAssignWithSlice(),
'desc_inputs': [Ta, u_tensor],
}),
('TensorAssignWithSlice2', {
'block': TensorAssignWithSlice2(),
'desc_inputs': [t_1d, u_tensor],
}),
('TensorAssignWithBoolTensorIndex', {
'block': TensorAssignWithBoolTensorIndex(),
'desc_inputs': [Ta, Tb, Tc, u_tensor, u_scalar],
}),
('TensorAssignWithBoolTensorIndex2', {
'block': TensorAssignWithBoolTensorIndex2(),
'desc_inputs': [Ta, u_tensor, u_scalar],
}),
('SlicePositive', {
'block': NetWorkSlicePositive(),
'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
}),
('SliceReduceDimension', {
'block': NetWorkReduceDimension(),
'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
}),
('SliceNegative', {
'block': NetWorkStepNegative(),
'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
}),
('SliceReduceToScalar', {
'block': NetWorkReduceToScalar(),
'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
}),
('TensorSliceEllipsis', {
'block': NetWorkSliceEllipsis(),
'desc_inputs': [Tensor(np.ones([6, 7, 8, 9], np.int32))],
}),
]
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_compile():
context.set_context(mode=context.GRAPH_MODE)
return test_cases
def test_tensor_slice_reduce_out_of_bounds_neg():
class NetWork(Cell):
def __init__(self):
super(NetWork, self).__init__()
self.tensor_ret = Tensor(np.array(9, np.int32))
def construct(self, tensor):
ret = tensor[-7, 3, 4]
return ret
input_tensor = Tensor(np.ones([6, 8, 10], np.int32))
net = NetWork()
with pytest.raises(ValueError) as ex:
net(input_tensor)
assert "For 'StridedSlice' the `begin[0]` should be an int and must greater or equal to -6, but got `-7`" in str(ex.value)
def test_tensor_slice_reduce_out_of_bounds_positive():
class NetWork(Cell):
def __init__(self):
super(NetWork, self).__init__()
self.tensor_ret = Tensor(np.array(9, np.int32))
def construct(self, tensor):
ret = tensor[6, 3, 4]
return ret
input_tensor = Tensor(np.ones([6, 8, 10], np.int32))
net = NetWork()
with pytest.raises(ValueError) as ex:
net(input_tensor)
assert "For 'StridedSlice' the `begin[0]` should be an int and must less than 6, but got `6`" in str(ex.value)