You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_smoothl1loss_op.py

120 lines
4.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import composite as C
def smoothl1loss(beta):
np.random.seed(42)
prediction = np.random.randn(20).astype(np.float32)
target = np.random.randn(20).astype(np.float32)
net = nn.SmoothL1Loss(beta)
return net(Tensor(prediction), Tensor(target))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_smoothl1loss():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
epsilon = 1e-6
beta = 1.0
loss = smoothl1loss(beta)
expect = [0.46941718, 0.00382918, 0.16829303, 2.447778, 0.04812113, 0.05953304,
2.2302065, 0.07672881, 0.00860204, 0.34798968, 0.00956192, 1.818008,
0.03262977, 0.36599946, 2.047463, 0.2168481, 0.7216947, 1.7739174,
0.08826803, 1.109165]
diff = np.absolute(loss.asnumpy() - np.array(expect))
assert(diff < epsilon).all()
beta = 1 / 9
loss = smoothl1loss(beta)
expect = [0.9133791, 0.03446258, 0.5246048, 2.8922224, 0.2546738, 0.289504,
2.674651, 0.33618113, 0.07560876, 0.7786982, 0.08273339, 2.2624524,
0.19990394, 0.8000138, 2.4919074, 0.6030006, 1.1661391, 2.2183619,
0.3646064, 1.5536094]
diff = np.absolute(loss.asnumpy() - np.array(expect))
assert(diff < epsilon).all()
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = C.GradOperation(get_all=True, sens_param=True)
self.network = network
def construct(self, x1, x2, sens):
gout = self.grad(self.network)(x1, x2, sens)
return gout
def smoothl1loss_grad(beta):
np.random.seed(42)
prediction = np.random.randn(20).astype(np.float32)
target = np.random.randn(20).astype(np.float32)
sens = np.random.randn(20).astype(np.float32)
net = nn.SmoothL1Loss(beta)
grad = Grad(net)
return grad(Tensor(prediction), Tensor(target), Tensor(sens))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_smoothl1loss_grad():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
epsilon = 1e-6
beta = 1.0
dx = smoothl1loss_grad(beta)
dx1_expect = [-0.71552587, 0.01499678, -0.06709455, -0.30110368, -0.45868093,
0.24838912, -0.46063876, 0.41411355, 0.04507046, -1.4708229,
0.04481723, 0.38508227, -0.17292616, -0.52333146, -1.0309995,
0.61330026, 0.83921754, -0.3092124, 0.1391843, -0.9755451]
dx2_expect = [0.71552587, -0.01499678, 0.06709455, 0.30110368, 0.45868093,
-0.24838912, 0.46063876, -0.41411355, -0.04507046, 1.4708229,
-0.04481723, -0.38508227, 0.17292616, 0.52333146, 1.0309995,
-0.61330026, -0.83921754, 0.3092124, -0.1391843, 0.9755451]
diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect))
diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect))
assert(diff1 < epsilon).all()
assert(diff2 < epsilon).all()
beta = 1 / 9
dx = smoothl1loss_grad(beta)
dx1_expect = [-0.73846656, 0.13497104, -0.11564828, -0.30110368, -1.478522,
0.7198442, -0.46063876, 1.0571222, 0.3436183, -1.7630402,
0.32408398, 0.38508227, -0.676922, -0.6116763, -1.0309995,
0.93128014, 0.83921754, -0.3092124, 0.33126342, -0.9755451]
dx2_expect = [0.73846656, -0.13497104, 0.11564828, 0.30110368, 1.478522,
-0.7198442, 0.46063876, -1.0571222, -0.3436183, 1.7630402,
-0.32408398, -0.38508227, 0.676922, 0.6116763, 1.0309995,
-0.93128014, -0.83921754, 0.3092124, -0.33126342, 0.9755451]
diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect))
diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect))
assert(diff1 < epsilon).all()
assert(diff2 < epsilon).all()