You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/batch_op_test.cc

328 lines
12 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include <memory>
#include <string>
#include "dataset/core/client.h"
#include "common/common.h"
#include "common/utils.h"
#include "gtest/gtest.h"
#include "dataset/core/global_context.h"
#include "dataset/util/de_error.h"
#include "utils/log_adapter.h"
#include "securec.h"
#include "dataset/util/status.h"
namespace common = mindspore::common;
namespace de = mindspore::dataset;
using namespace mindspore::dataset;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
class MindDataTestBatchOp : public UT::DatasetOpTesting {
protected:
};
std::shared_ptr<de::BatchOp> Batch(int32_t batch_size = 1, bool drop = false, int rows_per_buf = 2) {
Status rc;
std::shared_ptr<de::BatchOp> op;
rc = de::BatchOp::Builder(batch_size).SetDrop(drop).Build(&op);
EXPECT_TRUE(rc.IsOk());
return op;
}
std::shared_ptr<de::RepeatOp> Repeat(int repeat_cnt = 1) {
de::RepeatOp::Builder builder(repeat_cnt);
std::shared_ptr<de::RepeatOp> op;
Status rc = builder.Build(&op);
EXPECT_TRUE(rc.IsOk());
return op;
}
std::shared_ptr<de::StorageOp> Storage(std::string schema, int rows_per_buf = 2, int num_works = 8) {
std::shared_ptr<de::StorageOp> so;
de::StorageOp::Builder builder;
builder.SetDatasetFilesDir(schema).SetRowsPerBuffer(rows_per_buf).SetNumWorkers(num_works);
Status rc = builder.Build(&so);
return so;
}
std::shared_ptr<de::ExecutionTree> Build(std::vector<std::shared_ptr<de::DatasetOp>> ops) {
std::shared_ptr<de::ExecutionTree> tree = std::make_shared<de::ExecutionTree>();
for (int i = 0; i < ops.size(); i++) {
tree->AssociateNode(ops[i]);
if (i > 0) {
ops[i]->AddChild(ops[i - 1]);
}
if (i == ops.size() - 1) {
tree->AssignRoot(ops[i]);
}
}
return tree;
}
TEST_F(MindDataTestBatchOp, TestSimpleBatch) {
std::string schema_file = datasets_root_path_ + "/testBatchDataset";
bool success = false;
auto tree = Build({Storage(schema_file), Batch(12)});
tree->Prepare();
Status rc = tree->Launch();
if (rc.IsError()) {
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
} else {
int64_t payload[] = {-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807};
de::DatasetIterator di(tree);
TensorMap tensor_map;
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
std::shared_ptr<de::Tensor> t;
rc = de::Tensor::CreateTensor(&t,
TensorImpl::kFlexible, de::TensorShape({12, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) payload);
EXPECT_TRUE(rc.IsOk());
// verify the actual data in Tensor is correct
EXPECT_EQ(*t == *tensor_map["col_sint64"], true);
// change what's in Tensor and verify this time the data is incorrect1;
EXPECT_EQ(*t == *tensor_map["col_sint16"], false);
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
if (tensor_map.size() == 0) {
success = true;
}
}
EXPECT_EQ(success, true);
}
TEST_F(MindDataTestBatchOp, TestRepeatBatchDropTrue) {
std::string schema_file = datasets_root_path_ + "/testBatchDataset";
bool success = false;
auto tree = Build({Storage(schema_file), Repeat(2), Batch(7, true, 99)});
tree->Prepare();
Status rc = tree->Launch();
if (rc.IsError()) {
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
} else {
int64_t payload[] = {-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807,
-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807};
de::DatasetIterator di(tree);
std::shared_ptr<de::Tensor> t1, t2, t3;
rc = de::Tensor::CreateTensor(&t1,
TensorImpl::kFlexible, de::TensorShape({7, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) payload);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t2,
TensorImpl::kFlexible, de::TensorShape({7, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) (payload + 7));
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t3,
TensorImpl::kFlexible, de::TensorShape({7, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) (payload + 2));
EXPECT_TRUE(rc.IsOk());
TensorMap tensor_map;
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t1 == *(tensor_map["col_sint64"]), true); // first call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t2 == *(tensor_map["col_sint64"]), true); // second call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t3 == *(tensor_map["col_sint64"]), true); // third call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
if (tensor_map.size() == 0) {
success = true;
}
}
EXPECT_EQ(success, true);
}
TEST_F(MindDataTestBatchOp, TestRepeatBatchDropFalse) {
std::string schema_file = datasets_root_path_ + "/testBatchDataset";
bool success = false;
auto tree = Build({Storage(schema_file), Repeat(2), Batch(7, false, 99)});
tree->Prepare();
Status rc = tree->Launch();
if (rc.IsError()) {
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
} else {
int64_t payload[] = {-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807,
-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807};
de::DatasetIterator di(tree);
std::shared_ptr<de::Tensor> t1, t2, t3, t4;
rc = de::Tensor::CreateTensor(&t1,
TensorImpl::kFlexible, de::TensorShape({7, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) payload);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t2,
TensorImpl::kFlexible, de::TensorShape({7, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) (payload + 7));
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t3,
TensorImpl::kFlexible, de::TensorShape({7, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) (payload + 2));
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t4,
TensorImpl::kFlexible, de::TensorShape({3, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) (payload + 9));
EXPECT_TRUE(rc.IsOk());
TensorMap tensor_map;
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t1 == *(tensor_map["col_sint64"]), true); // first call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t2 == *(tensor_map["col_sint64"]), true); // second call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t3 == *(tensor_map["col_sint64"]), true); // third call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t4 == *(tensor_map["col_sint64"]), true); // last call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
if (tensor_map.size() == 0) {
success = true;
}
}
EXPECT_EQ(success, true);
}
TEST_F(MindDataTestBatchOp, TestBatchDropFalseRepeat) {
std::string schema_file = datasets_root_path_ + "/testBatchDataset";
bool success = false;
auto tree = Build({Storage(schema_file), Batch(7, false, 99), Repeat(2)});
tree->Prepare();
Status rc = tree->Launch();
if (rc.IsError()) {
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
} else {
int64_t payload[] = {-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807,
-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807};
de::DatasetIterator di(tree);
std::shared_ptr<de::Tensor> t1, t2;
rc = de::Tensor::CreateTensor(&t1,
TensorImpl::kFlexible, de::TensorShape({7, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) payload);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t2,
TensorImpl::kFlexible, de::TensorShape({5, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) (payload + 7));
EXPECT_TRUE(rc.IsOk());
TensorMap tensor_map;
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t1 == *(tensor_map["col_sint64"]), true); // first call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t2 == *(tensor_map["col_sint64"]), true); // second call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t1 == *(tensor_map["col_sint64"]), true); // third call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t2 == *(tensor_map["col_sint64"]), true); // last call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
if (tensor_map.size() == 0) {
success = true;
}
}
EXPECT_EQ(success, true);
}
TEST_F(MindDataTestBatchOp, TestBatchDropTrueRepeat) {
std::string schema_file = datasets_root_path_ + "/testBatchDataset";
bool success = false;
auto tree = Build({Storage(schema_file), Batch(5, true, 99), Repeat(2)});
tree->Prepare();
Status rc = tree->Launch();
if (rc.IsError()) {
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
} else {
int64_t payload[] = {-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807,
-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807};
de::DatasetIterator di(tree);
std::shared_ptr<de::Tensor> t1, t2;
rc = de::Tensor::CreateTensor(&t1,
TensorImpl::kFlexible, de::TensorShape({5, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) payload);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t2,
TensorImpl::kFlexible, de::TensorShape({5, 1}),
de::DataType(DataType::DE_INT64),
(unsigned char *) (payload + 5));
EXPECT_TRUE(rc.IsOk());
TensorMap tensor_map;
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t1 == *(tensor_map["col_sint64"]), true); // first call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t2 == *(tensor_map["col_sint64"]), true); // second call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t1 == *(tensor_map["col_sint64"]), true); // third call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
EXPECT_EQ(*t2 == *(tensor_map["col_sint64"]), true); // last call to getNext()
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
if (tensor_map.size() == 0) {
success = true;
}
}
EXPECT_EQ(success, true);
}