You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_rescale_op.py

108 lines
3.5 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the rescale op in DE
"""
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as vision
from mindspore import log as logger
from util import visualize_image, diff_mse, save_and_check_md5
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def rescale_np(image):
"""
Apply the rescale
"""
image = image / 255.0
image = image - 1.0
return image
def get_rescaled(image_id):
"""
Reads the image using DE ops and then rescales using Numpy
"""
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
data1 = data1.map(operations=decode_op, input_columns=["image"])
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1):
image = item["image"].asnumpy()
if num_iter == image_id:
return rescale_np(image)
num_iter += 1
return None
def test_rescale_op(plot=False):
"""
Test rescale
"""
logger.info("Test rescale")
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# define map operations
decode_op = vision.Decode()
rescale_op = vision.Rescale(1.0 / 255.0, -1.0)
# apply map operations on images
data1 = data1.map(operations=decode_op, input_columns=["image"])
data2 = data1.map(operations=rescale_op, input_columns=["image"])
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
image_original = item1["image"]
image_de_rescaled = item2["image"]
image_np_rescaled = get_rescaled(num_iter)
mse = diff_mse(image_de_rescaled, image_np_rescaled)
assert mse < 0.001 # rounding error
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
num_iter += 1
if plot:
visualize_image(image_original, image_de_rescaled, mse, image_np_rescaled)
def test_rescale_md5():
"""
Test Rescale with md5 comparison
"""
logger.info("Test Rescale with md5 comparison")
# generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
rescale_op = vision.Rescale(1.0 / 255.0, -1.0)
# apply map operations on images
data = data.map(operations=decode_op, input_columns=["image"])
data = data.map(operations=rescale_op, input_columns=["image"])
# check results with md5 comparison
filename = "rescale_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_rescale_op(plot=True)
test_rescale_md5()