You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_text_bert_tokenizer.py

248 lines
9.5 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing BertTokenizer op in DE
"""
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger
import mindspore.dataset.text as text
BERT_TOKENIZER_FILE = "../data/dataset/testTokenizerData/bert_tokenizer.txt"
vocab_bert = [
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"i", "am", "mak", "make", "small", "mistake", "##s", "during", "work", "##ing", "hour",
"😀", "😃", "😄", "😁", "+", "/", "-", "=", "12", "28", "40", "16", " ", "I",
"[CLS]", "[SEP]", "[UNK]", "[PAD]", "[MASK]", "[unused1]", "[unused10]"
]
pad = '<pad>'
test_paras = [
# test chinese text
dict(
first=1,
last=4,
expect_str=[['', '', '', '', ''],
['', '', '', '', ''],
['', '', '', '', ''],
['', '', '', '', '']],
expected_offsets_start=[[0, 3, 6, 9, 12],
[0, 3, 6, 9, 12],
[0, 3, 6, 9, 12],
[0, 3, 6, 9, 12]],
expected_offsets_limit=[[3, 6, 9, 12, 15],
[3, 6, 9, 12, 15],
[3, 6, 9, 12, 15],
[3, 6, 9, 12, 15]],
vocab_list=vocab_bert
),
# test english text
dict(
first=5,
last=5,
expect_str=[['i', 'am', 'mak', '##ing', 'small', 'mistake', '##s', 'during', 'work', '##ing', 'hour', '##s']],
expected_offsets_start=[[0, 2, 5, 8, 12, 18, 25, 27, 34, 38, 42, 46]],
expected_offsets_limit=[[1, 4, 8, 11, 17, 25, 26, 33, 38, 41, 46, 47]],
lower_case=True,
vocab_list=vocab_bert
),
dict(
first=5,
last=5,
expect_str=[['I', "am", 'mak', '##ing', 'small', 'mistake', '##s', 'during', 'work', '##ing', 'hour', '##s']],
expected_offsets_start=[[0, 2, 5, 8, 12, 18, 25, 27, 34, 38, 42, 46]],
expected_offsets_limit=[[1, 4, 8, 11, 17, 25, 26, 33, 38, 41, 46, 47]],
lower_case=False,
vocab_list=vocab_bert
),
# test emoji tokens
dict(
first=6,
last=7,
expect_str=[
['😀', '', '', '😃', '', '', '😄', '', '', '😁', '', ''],
['', '', '']],
expected_offsets_start=[[0, 4, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37], [0, 3, 6]],
expected_offsets_limit=[[4, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37, 40], [3, 6, 9]],
normalization_form=text.utils.NormalizeForm.NFKC,
vocab_list=vocab_bert
),
# test preserved tokens
dict(
first=8,
last=14,
expect_str=[
['[UNK]', '[CLS]'],
['[UNK]', '[SEP]'],
['[UNK]', '[UNK]'],
['[UNK]', '[PAD]'],
['[UNK]', '[MASK]'],
['[unused1]'],
['[unused10]']
],
expected_offsets_start=[[0, 7], [0, 7], [0, 7], [0, 7], [0, 7], [0], [0]],
expected_offsets_limit=[[6, 12], [6, 12], [6, 12], [6, 12], [6, 13], [9], [10]],
lower_case=False,
vocab_list=vocab_bert,
preserve_unused_token=True,
),
dict(
first=8,
last=14,
expect_str=[
['[UNK]', '[CLS]'],
['[UNK]', '[SEP]'],
['[UNK]', '[UNK]'],
['[UNK]', '[PAD]'],
['[UNK]', '[MASK]'],
['[unused1]'],
['[unused10]']
],
expected_offsets_start=[[0, 7], [0, 7], [0, 7], [0, 7], [0, 7], [0], [0]],
expected_offsets_limit=[[6, 12], [6, 12], [6, 12], [6, 12], [6, 13], [9], [10]],
lower_case=True,
vocab_list=vocab_bert,
preserve_unused_token=True,
),
# test special symbol
dict(
first=15,
last=15,
expect_str=[['12', '+', '/', '-', '28', '=', '40', '/', '-', '16']],
expected_offsets_start=[[0, 2, 3, 4, 5, 7, 8, 10, 11, 12]],
expected_offsets_limit=[[2, 3, 4, 5, 7, 8, 10, 11, 12, 14]],
preserve_unused_token=True,
vocab_list=vocab_bert
),
# test non-default parms
dict(
first=8,
last=8,
expect_str=[['[UNK]', ' ', '[CLS]']],
expected_offsets_start=[[0, 6, 7]],
expected_offsets_limit=[[6, 7, 12]],
lower_case=False,
vocab_list=vocab_bert,
preserve_unused_token=True,
keep_whitespace=True
),
dict(
first=8,
last=8,
expect_str=[['unused', ' ', '[CLS]']],
expected_offsets_start=[[0, 6, 7]],
expected_offsets_limit=[[6, 7, 12]],
lower_case=False,
vocab_list=vocab_bert,
preserve_unused_token=True,
keep_whitespace=True,
unknown_token=''
),
dict(
first=8,
last=8,
expect_str=[['unused', ' ', '[', 'CLS', ']']],
expected_offsets_start=[[0, 6, 7, 8, 11]],
expected_offsets_limit=[[6, 7, 8, 11, 12]],
lower_case=False,
vocab_list=vocab_bert,
preserve_unused_token=False,
keep_whitespace=True,
unknown_token=''
),
]
def check_bert_tokenizer_default(first, last, expect_str,
expected_offsets_start, expected_offsets_limit,
vocab_list, suffix_indicator='##',
max_bytes_per_token=100, unknown_token='[UNK]',
lower_case=False, keep_whitespace=False,
normalization_form=text.utils.NormalizeForm.NONE,
preserve_unused_token=False):
dataset = ds.TextFileDataset(BERT_TOKENIZER_FILE, shuffle=False)
if first > 1:
dataset = dataset.skip(first - 1)
if last >= first:
dataset = dataset.take(last - first + 1)
vocab = text.Vocab.from_list(vocab_list)
tokenizer_op = text.BertTokenizer(
vocab=vocab, suffix_indicator=suffix_indicator,
max_bytes_per_token=max_bytes_per_token, unknown_token=unknown_token,
lower_case=lower_case, keep_whitespace=keep_whitespace,
normalization_form=normalization_form,
preserve_unused_token=preserve_unused_token)
dataset = dataset.map(operations=tokenizer_op)
count = 0
for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
token = text.to_str(i['text'])
logger.info("Out:", token)
logger.info("Exp:", expect_str[count])
np.testing.assert_array_equal(token, expect_str[count])
count = count + 1
def check_bert_tokenizer_with_offsets(first, last, expect_str,
expected_offsets_start, expected_offsets_limit,
vocab_list, suffix_indicator='##',
max_bytes_per_token=100, unknown_token='[UNK]',
lower_case=False, keep_whitespace=False,
normalization_form=text.utils.NormalizeForm.NONE,
preserve_unused_token=False):
dataset = ds.TextFileDataset(BERT_TOKENIZER_FILE, shuffle=False)
if first > 1:
dataset = dataset.skip(first - 1)
if last >= first:
dataset = dataset.take(last - first + 1)
vocab = text.Vocab.from_list(vocab_list)
tokenizer_op = text.BertTokenizer(
vocab=vocab, suffix_indicator=suffix_indicator, max_bytes_per_token=max_bytes_per_token,
unknown_token=unknown_token, lower_case=lower_case, keep_whitespace=keep_whitespace,
normalization_form=normalization_form, preserve_unused_token=preserve_unused_token, with_offsets=True)
dataset = dataset.map(operations=tokenizer_op, input_columns=['text'],
output_columns=['token', 'offsets_start', 'offsets_limit'],
column_order=['token', 'offsets_start', 'offsets_limit'])
count = 0
for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
token = text.to_str(i['token'])
logger.info("Out:", token)
logger.info("Exp:", expect_str[count])
np.testing.assert_array_equal(token, expect_str[count])
np.testing.assert_array_equal(i['offsets_start'], expected_offsets_start[count])
np.testing.assert_array_equal(i['offsets_limit'], expected_offsets_limit[count])
count = count + 1
def test_bert_tokenizer_default():
"""
Test WordpieceTokenizer when with_offsets=False
"""
for paras in test_paras:
check_bert_tokenizer_default(**paras)
def test_bert_tokenizer_with_offsets():
"""
Test WordpieceTokenizer when with_offsets=True
"""
for paras in test_paras:
check_bert_tokenizer_with_offsets(**paras)
if __name__ == '__main__':
test_bert_tokenizer_default()
test_bert_tokenizer_with_offsets()