You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/image_process_test.cc

337 lines
10 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "lite_cv/lite_mat.h"
#include "lite_cv/image_process.h"
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/types_c.h>
#include "utils/log_adapter.h"
#include <fstream>
using namespace mindspore::dataset;
class MindDataImageProcess : public UT::Common {
public:
MindDataImageProcess() {}
void SetUp() {}
};
void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) {
int cv_h = cv_mat.rows;
int cv_w = cv_mat.cols;
int cv_c = cv_mat.channels();
int lite_h = lite_mat.height_;
int lite_w = lite_mat.width_;
int lite_c = lite_mat.channel_;
ASSERT_TRUE(cv_h == lite_h);
ASSERT_TRUE(cv_w == lite_w);
ASSERT_TRUE(cv_c == lite_c);
}
LiteMat Lite3CImageProcess(LiteMat &lite_mat_bgr) {
bool ret;
LiteMat lite_mat_resize;
ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
if (!ret) {
MS_LOG(ERROR) << "ResizeBilinear error";
}
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
if (!ret) {
MS_LOG(ERROR) << "ConvertTo error";
}
LiteMat lite_mat_crop;
ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
if (!ret) {
MS_LOG(ERROR) << "Crop error";
}
std::vector<float> means = {0.485, 0.456, 0.406};
std::vector<float> stds = {0.229, 0.224, 0.225};
LiteMat lite_norm_mat_cut;
SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
return lite_norm_mat_cut;
}
cv::Mat cv3CImageProcess(cv::Mat &image) {
cv::Mat resize_256_image;
cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
cv::Mat float_256_image;
resize_256_image.convertTo(float_256_image, CV_32FC3);
cv::Mat roi_224_image;
cv::Rect roi;
roi.x = 16;
roi.y = 16;
roi.width = 224;
roi.height = 224;
float_256_image(roi).copyTo(roi_224_image);
float meanR = 0.485;
float meanG = 0.456;
float meanB = 0.406;
float varR = 0.229;
float varG = 0.224;
float varB = 0.225;
cv::Scalar mean = cv::Scalar(meanR, meanG, meanB);
cv::Scalar var = cv::Scalar(varR, varG, varB);
cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean);
cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var);
cv::Mat imgR1 = roi_224_image - imgMean;
cv::Mat imgR2 = imgR1 / imgVar;
return imgR2;
}
TEST_F(MindDataImageProcess, test3C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_image = cv3CImageProcess(image);
// cv::imwrite("/home/xlei/test_3cv.jpg", cv_image);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
if (!ret) {
MS_LOG(ERROR) << "Init From RGBA error";
}
LiteMat lite_norm_mat_cut = Lite3CImageProcess(lite_mat_bgr);
cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_);
// cv::imwrite("/home/xlei/test_3clite.jpg", dst_image);
CompareMat(cv_image, lite_norm_mat_cut);
}
LiteMat Lite1CImageProcess(LiteMat &lite_mat_bgr) {
LiteMat lite_mat_resize;
ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
LiteMat lite_mat_convert_float;
ConvertTo(lite_mat_resize, lite_mat_convert_float);
LiteMat lite_mat_cut;
Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224);
std::vector<float> means = {0.485};
std::vector<float> stds = {0.229};
LiteMat lite_norm_mat_cut;
SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, stds);
return lite_norm_mat_cut;
}
cv::Mat cv1CImageProcess(cv::Mat &image) {
cv::Mat gray_image;
cv::cvtColor(image, gray_image, CV_BGR2GRAY);
cv::Mat resize_256_image;
cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
cv::Mat float_256_image;
resize_256_image.convertTo(float_256_image, CV_32FC3);
cv::Mat roi_224_image;
cv::Rect roi;
roi.x = 16;
roi.y = 16;
roi.width = 224;
roi.height = 224;
float_256_image(roi).copyTo(roi_224_image);
float meanR = 0.485;
float varR = 0.229;
cv::Scalar mean = cv::Scalar(meanR);
cv::Scalar var = cv::Scalar(varR);
cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean);
cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var);
cv::Mat imgR1 = roi_224_image - imgMean;
cv::Mat imgR2 = imgR1 / imgVar;
return imgR2;
}
TEST_F(MindDataImageProcess, test1C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_image = cv1CImageProcess(image);
// cv::imwrite("/home/xlei/test_c1v.jpg", cv_image);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
LiteMat lite_norm_mat_cut = Lite1CImageProcess(lite_mat_bgr);
cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_);
// cv::imwrite("/home/xlei/test_c1lite.jpg", dst_image);
CompareMat(cv_image, lite_norm_mat_cut);
}
TEST_F(MindDataImageProcess, TestPadd) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat resize_256_image;
cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
int left = 10;
int right = 10;
int top = 10;
int bottom = 10;
cv::Mat b_image;
cv::Scalar color = cv::Scalar(255, 255, 255);
cv::copyMakeBorder(resize_256_image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
// cv::imwrite("/home/xlei/test_ccc.jpg", b_image);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
LiteMat lite_mat_resize;
ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
LiteMat makeborder;
Pad(lite_mat_resize, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
cv::Mat dst_image(256 + top + bottom, 256 + left + right, CV_8UC3, makeborder.data_ptr_);
// cv::imwrite("/home/xlei/test_liteccc.jpg", dst_image);
}
TEST_F(MindDataImageProcess, TestGetDefaultBoxes) {
std::string benchmark = "data/dataset/testLite/default_boxes.bin";
BoxesConfig config;
config.img_shape = {300, 300};
config.num_default = {3, 6, 6, 6, 6, 6};
config.feature_size = {19, 10, 5, 3, 2, 1};
config.min_scale = 0.2;
config.max_scale = 0.95;
config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}};
config.steps = {16, 32, 64, 100, 150, 300};
config.prior_scaling = {0.1, 0.2};
int rows = 1917;
int cols = 4;
std::vector<double> benchmark_boxes(rows * cols);
std::ifstream in(benchmark, std::ios::in | std::ios::binary);
in.read(reinterpret_cast<char *>(benchmark_boxes.data()), benchmark_boxes.size() * sizeof(double));
in.close();
std::vector<std::vector<float>> default_boxes = GetDefaultBoxes(config);
EXPECT_EQ(default_boxes.size(), rows);
EXPECT_EQ(default_boxes[0].size(), cols);
double distance = 0.0f;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
distance += pow(default_boxes[i][j] - benchmark_boxes[i * cols + j], 2);
}
}
distance = sqrt(distance);
EXPECT_LT(distance, 1e-5);
}
TEST_F(MindDataImageProcess, TestApplyNms) {
std::vector<std::vector<float>> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}};
std::vector<float> all_scores = {0.6, 0.5, 0.4, 0.9};
std::vector<int> keep = ApplyNms(all_boxes, all_scores, 0.5, 10);
ASSERT_TRUE(keep[0] == 3);
ASSERT_TRUE(keep[1] == 0);
ASSERT_TRUE(keep[2] == 1);
}
TEST_F(MindDataImageProcess, TestAffine) {
// The input matrix
// 0 0 1 0 0
// 0 0 1 0 0
// 2 2 3 2 2
// 0 0 1 0 0
// 0 0 1 0 0
size_t rows = 5;
size_t cols = 5;
LiteMat src(rows, cols);
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
if (i == 2 && j == 2) {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 3;
} else if (i == 2) {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 2;
} else if (j == 2) {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 1;
} else {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 0;
}
}
}
// Expect output matrix
// 0 0 2 0 0
// 0 0 2 0 0
// 1 1 3 1 1
// 0 0 2 0 0
// 0 0 2 0 0
LiteMat expect(rows, cols);
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
if (i == 2 && j == 2) {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 3;
} else if (i == 2) {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 1;
} else if (j == 2) {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 2;
} else {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 0;
}
}
}
double angle = 90.0f;
cv::Point2f center(rows / 2, cols / 2);
cv::Mat rotate_matrix = cv::getRotationMatrix2D(center, angle, 1.0);
double M[6];
for (size_t i = 0; i < 6; i++) {
M[i] = rotate_matrix.at<double>(i);
}
std::cout << std::endl;
LiteMat dst;
Affine(src, dst, M, {rows, cols}, UINT8_C1(0));
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
EXPECT_EQ(static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j].c1,
static_cast<UINT8_C1 *>(dst.data_ptr_)[i * cols + j].c1);
}
}
}