You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
320 lines
12 KiB
320 lines
12 KiB
/**
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <math.h>
|
|
#include "nnacl/fp32/resize.h"
|
|
#include "nnacl/common_func.h"
|
|
#include "nnacl/errorcode.h"
|
|
int PrepareResizeBilinear(const int *input_shape, const int *output_shape, bool align_corners, int *y_bottoms,
|
|
int *y_tops, int *x_lefts, int *x_rights, float *y_bottom_weights, float *x_left_weights) {
|
|
if (input_shape == NULL || output_shape == NULL || y_bottoms == NULL || y_tops == NULL || x_lefts == NULL ||
|
|
x_rights == NULL || y_bottom_weights == NULL || x_left_weights == NULL) {
|
|
return NNACL_NULL_PTR;
|
|
}
|
|
|
|
int in_h = input_shape[1];
|
|
int in_w = input_shape[2];
|
|
|
|
int new_height = output_shape[1];
|
|
int new_width = output_shape[2];
|
|
float height_scale = (float)(in_h) / new_height;
|
|
float width_scale = (float)(in_w) / new_width;
|
|
if (align_corners && new_height > 1) {
|
|
height_scale = (float)(in_h - 1) / (new_height - 1);
|
|
}
|
|
if (align_corners && new_width > 1) {
|
|
width_scale = (float)(in_w - 1) / (new_width - 1);
|
|
}
|
|
|
|
int h, w;
|
|
for (h = 0; h < new_height; h++) {
|
|
float actual_y = (float)h * height_scale;
|
|
int y_bottom = (int)(floor(actual_y));
|
|
int y_top = y_bottom + 1 < in_h ? (y_bottom + 1) : (in_h - 1);
|
|
float y_top_weight = actual_y - (float)(y_bottom);
|
|
const float y_bottom_weight = 1.0f - y_top_weight;
|
|
|
|
y_bottoms[h] = y_bottom;
|
|
y_tops[h] = y_top;
|
|
y_bottom_weights[h] = y_bottom_weight;
|
|
}
|
|
for (w = 0; w < new_width; w++) {
|
|
float actual_x = (float)(w)*width_scale;
|
|
int x_left = (int)(floor(actual_x));
|
|
int x_right = x_left + 1 < in_w ? (x_left + 1) : (in_w - 1);
|
|
float x_right_weight = actual_x - (float)(x_left);
|
|
const float x_left_weight = 1.0f - x_right_weight;
|
|
|
|
x_lefts[w] = x_left;
|
|
x_rights[w] = x_right;
|
|
x_left_weights[w] = x_left_weight;
|
|
}
|
|
return NNACL_OK;
|
|
}
|
|
|
|
int ResizeBilinear(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
|
const int *y_bottoms, const int *y_tops, const int *x_lefts, const int *x_rights,
|
|
const float *y_bottom_weights, const float *x_left_weights, const int n_h_begin, const int n_h_end) {
|
|
if (input_data == NULL || output_data == NULL || input_shape == NULL || output_shape == NULL || y_bottoms == NULL ||
|
|
y_tops == NULL || x_lefts == NULL || x_rights == NULL || y_bottom_weights == NULL || x_left_weights == NULL) {
|
|
return NNACL_NULL_PTR;
|
|
}
|
|
|
|
int in_w = input_shape[2];
|
|
int in_c = input_shape[3];
|
|
|
|
int new_height = output_shape[1];
|
|
int new_width = output_shape[2];
|
|
|
|
int n_h, n, h, w, c;
|
|
n = n_h_begin / new_height;
|
|
h = n_h_begin % new_height;
|
|
int n_h_stride = new_width * in_c;
|
|
int out_offset = n_h_begin * n_h_stride;
|
|
for (n_h = n_h_begin; n_h < n_h_end; n_h++, h++) {
|
|
if (h == new_height) {
|
|
h = 0;
|
|
n++;
|
|
}
|
|
int y_bottom = y_bottoms[h];
|
|
int y_top = y_tops[h];
|
|
float y_bottom_weight = y_bottom_weights[h];
|
|
const float y_top_weight = 1.0f - y_bottom_weight;
|
|
|
|
for (w = 0; w < new_width; w++) {
|
|
int x_left = x_lefts[w];
|
|
int x_right = x_rights[w];
|
|
float x_left_weight = x_left_weights[w];
|
|
const float x_right_weight = 1.0f - x_left_weight;
|
|
float top_left_weight = y_top_weight * x_left_weight;
|
|
float top_right_weight = y_top_weight * x_right_weight;
|
|
float bottom_left_weight = y_bottom_weight * x_left_weight;
|
|
float bottom_right_weight = y_bottom_weight * x_right_weight;
|
|
|
|
c = 0;
|
|
int in_bottom_left_offset = offset(input_shape, n, y_bottom, x_left, c);
|
|
int in_bottom_right_offset = in_bottom_left_offset + (x_right - x_left) * in_c;
|
|
int in_top_left_offset = in_bottom_left_offset + (y_top - y_bottom) * in_w * in_c;
|
|
int in_top_right_offset = in_bottom_right_offset + (y_top - y_bottom) * in_w * in_c;
|
|
|
|
#ifdef ENABLE_NEON
|
|
float32x4_t top_left_w = vdupq_n_f32(top_left_weight);
|
|
float32x4_t top_right_w = vdupq_n_f32(top_right_weight);
|
|
float32x4_t bottom_left_w = vdupq_n_f32(bottom_left_weight);
|
|
float32x4_t bottom_right_w = vdupq_n_f32(bottom_right_weight);
|
|
|
|
for (; c <= in_c - 4; c += 4) {
|
|
float32x4_t bottom_left = vld1q_f32(input_data + in_bottom_left_offset + c);
|
|
float32x4_t bottom_right = vld1q_f32(input_data + in_bottom_right_offset + c);
|
|
float32x4_t top_left = vld1q_f32(input_data + in_top_left_offset + c);
|
|
float32x4_t top_right = vld1q_f32(input_data + in_top_right_offset + c);
|
|
|
|
float32x4_t interp_value = vdupq_n_f32(0.0);
|
|
|
|
float32x4_t tmp = vmulq_f32(bottom_left, bottom_left_w);
|
|
interp_value = vaddq_f32(interp_value, tmp);
|
|
|
|
tmp = vmulq_f32(bottom_right, bottom_right_w);
|
|
interp_value = vaddq_f32(interp_value, tmp);
|
|
|
|
tmp = vmulq_f32(top_left, top_left_w);
|
|
interp_value = vaddq_f32(interp_value, tmp);
|
|
|
|
tmp = vmulq_f32(top_right, top_right_w);
|
|
interp_value = vaddq_f32(interp_value, tmp);
|
|
vst1q_f32(output_data + out_offset, interp_value);
|
|
out_offset += 4;
|
|
}
|
|
#endif
|
|
for (; c < in_c; c++) {
|
|
float bottom_left = input_data[in_bottom_left_offset + c];
|
|
float bottom_right = input_data[in_bottom_right_offset + c];
|
|
float top_left = input_data[in_top_left_offset + c];
|
|
float top_right = input_data[in_top_right_offset + c];
|
|
float interp_value = bottom_left * bottom_left_weight + bottom_right * bottom_right_weight +
|
|
top_left * top_left_weight + top_right * top_right_weight;
|
|
output_data[out_offset] = interp_value;
|
|
out_offset++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NNACL_OK;
|
|
}
|
|
|
|
int InterpRow(const float *src_line, float *linear_output, int new_width, const float *x_left_weights,
|
|
const int *x_lefts, const int *x_rights, int in_c) {
|
|
int w;
|
|
for (w = 0; w < new_width; w++) {
|
|
int c = 0;
|
|
#ifdef ENABLE_NEON
|
|
float32x4_t left_w = vdupq_n_f32(x_left_weights[w]);
|
|
float32x4_t right_w = vdupq_n_f32(1.0f - x_left_weights[w]);
|
|
|
|
for (; c <= in_c - 4; c += 4) {
|
|
float32x4_t left = vld1q_f32(src_line + x_lefts[w] * in_c + c);
|
|
float32x4_t right = vld1q_f32(src_line + x_rights[w] * in_c + c);
|
|
|
|
float32x4_t interp_value = left * left_w + right * right_w;
|
|
vst1q_f32(linear_output + w * in_c + c, interp_value);
|
|
}
|
|
#endif
|
|
int left_w_offset = x_lefts[w] * in_c;
|
|
int right_w_offset = x_rights[w] * in_c;
|
|
for (; c < in_c; c++) {
|
|
float left = src_line[left_w_offset + c];
|
|
float right = src_line[right_w_offset + c];
|
|
linear_output[w * in_c + c] = left * x_left_weights[w] + right * (1.0f - x_left_weights[w]);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int InterpCol(const float *bottom_line, const float *top_line, float *output, int new_width, float y_bottom_weight,
|
|
int in_c) {
|
|
int w;
|
|
for (w = 0; w < new_width; w++) {
|
|
int c = 0;
|
|
#ifdef ENABLE_NEON
|
|
float32x4_t bottom_w = vdupq_n_f32(y_bottom_weight);
|
|
float32x4_t top_w = vdupq_n_f32(1.0f - y_bottom_weight);
|
|
|
|
for (; c <= in_c - 4; c += 4) {
|
|
float32x4_t bottom = vld1q_f32(bottom_line + w * in_c + c);
|
|
float32x4_t top = vld1q_f32(top_line + w * in_c + c);
|
|
float32x4_t interp_value = bottom * bottom_w + top * top_w;
|
|
vst1q_f32(output + w * in_c + c, interp_value);
|
|
}
|
|
#endif
|
|
for (; c < in_c; c++) {
|
|
float bottom = bottom_line[w * in_c + c];
|
|
float top = top_line[w * in_c + c];
|
|
output[w * in_c + c] = bottom * y_bottom_weight + top * (1.0f - y_bottom_weight);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int ResizeBilinear2(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
|
const int *y_bottoms, const int *y_tops, const int *x_lefts, const int *x_rights,
|
|
const float *y_bottom_weights, const float *x_left_weights, float *line0, float *line1,
|
|
const int n_h_begin, const int n_h_end) {
|
|
if (input_data == NULL || output_data == NULL || input_shape == NULL || output_shape == NULL || y_bottoms == NULL ||
|
|
y_tops == NULL || x_lefts == NULL || x_rights == NULL || y_bottom_weights == NULL || x_left_weights == NULL) {
|
|
return NNACL_NULL_PTR;
|
|
}
|
|
|
|
int in_h = input_shape[1];
|
|
int in_w = input_shape[2];
|
|
int in_c = input_shape[3];
|
|
|
|
int new_height = output_shape[1];
|
|
int new_width = output_shape[2];
|
|
|
|
int n_h;
|
|
int n_h_stride = new_width * in_c;
|
|
|
|
bool cache_line_used[2] = {false, false};
|
|
int cache_line_num[2] = {-1, -1};
|
|
float *const cache_line_ptr[2] = {line0, line1};
|
|
float *current_line_ptr[2] = {line0, line1};
|
|
int current_line_num[2] = {-1, -1};
|
|
|
|
for (n_h = n_h_begin; n_h < n_h_end; n_h++) {
|
|
int n, h;
|
|
n = n_h / new_height;
|
|
h = n_h % new_height;
|
|
|
|
current_line_num[0] = n * in_h + y_bottoms[h];
|
|
current_line_num[1] = n * in_h + y_tops[h];
|
|
int i;
|
|
for (i = 0; i < 2; i++) {
|
|
cache_line_used[i] = false;
|
|
}
|
|
// search if we cached
|
|
int j, k;
|
|
for (j = 0; j < 2; j++) {
|
|
bool find = false;
|
|
for (k = 0; k < 2; k++) {
|
|
if (current_line_num[j] == cache_line_num[k]) {
|
|
cache_line_used[k] = true;
|
|
current_line_ptr[j] = cache_line_ptr[k];
|
|
find = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!find) {
|
|
const float *line = input_data + current_line_num[j] * in_w * in_c;
|
|
for (k = 0; k < 2; k++) {
|
|
if (!cache_line_used[k]) {
|
|
cache_line_num[k] = current_line_num[j];
|
|
cache_line_used[k] = true;
|
|
current_line_ptr[j] = cache_line_ptr[k];
|
|
InterpRow(line, current_line_ptr[j], new_width, x_left_weights, x_lefts, x_rights, in_c);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// do col interp
|
|
InterpCol(current_line_ptr[0], current_line_ptr[1], output_data + n_h * n_h_stride, new_width, y_bottom_weights[h],
|
|
in_c);
|
|
}
|
|
|
|
return NNACL_OK;
|
|
}
|
|
|
|
int CalcNearestNeighbor(const int out_position, const int in_size, const float scale, const bool align_corners) {
|
|
int actual_v;
|
|
if (align_corners) {
|
|
actual_v = (int)(round((float)out_position * scale));
|
|
} else {
|
|
actual_v = (int)(floor((float)out_position * scale));
|
|
}
|
|
int input_position = actual_v < in_size ? actual_v : in_size - 1;
|
|
return input_position;
|
|
}
|
|
|
|
int ResizeNearestNeighbor(const float *input_data, float *output_data, const int *input_shape, const int *output_shape,
|
|
bool align_corners, int tid, int thread_num) {
|
|
int batch, y, x, c;
|
|
c = input_shape[3];
|
|
|
|
float height_scale = (float)(input_shape[1]) / (float)(output_shape[1]);
|
|
float width_scale = (float)(input_shape[2]) / (float)(output_shape[2]);
|
|
if (align_corners && output_shape[1] > 1) {
|
|
height_scale = (float)(input_shape[1] - 1) / (output_shape[1] - 1);
|
|
}
|
|
if (align_corners && output_shape[2] > 1) {
|
|
width_scale = (float)(input_shape[2] - 1) / (output_shape[2] - 1);
|
|
}
|
|
|
|
for (batch = 0; batch < output_shape[0]; batch++) {
|
|
for (y = tid; y < output_shape[1]; y += thread_num) {
|
|
int input_y = CalcNearestNeighbor(y, input_shape[1], height_scale, align_corners);
|
|
for (x = 0; x < output_shape[2]; x++) {
|
|
int input_x = CalcNearestNeighbor(x, input_shape[2], width_scale, align_corners);
|
|
int in_offset = offset(input_shape, batch, input_y, input_x, 0);
|
|
int out_offset = offset(output_shape, batch, y, x, 0);
|
|
memcpy(output_data + out_offset, input_data + in_offset, c * sizeof(float));
|
|
}
|
|
}
|
|
}
|
|
|
|
return NNACL_OK;
|
|
}
|