You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_rmsprop.py

168 lines
6.5 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class NetCenteredRMSProp(nn.Cell):
def __init__(self, lr, decay, momentum, epsilon):
super(NetCenteredRMSProp, self).__init__()
self.rms_opt = P.ApplyCenteredRMSProp()
self.lr = lr
self.decay = decay
self.momentum = momentum
self.epsilon = epsilon
def construct(self, var, g, mg, rms, mom):
return self.rms_opt(var, mg, rms, mom, g, self.lr, self.decay, self.momentum, self.epsilon)
class NetRMSProp(nn.Cell):
def __init__(self, lr, decay, momentum, epsilon):
super(NetRMSProp, self).__init__()
self.lr = lr
self.decay = decay
self.momentum = momentum
self.epsilon = epsilon
self.rms_opt = P.ApplyRMSProp()
def construct(self, var, g, mg, rms, mom):
return self.rms_opt(var, rms, mom, self.lr, g, self.decay, self.momentum, self.epsilon)
def rmsprop_numpy(variable, gradients, mean_square, moment,
learning_rate, decay, momentum, epsilon):
mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients
variable = variable - moment
def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment,
learning_rate, decay, momentum, epsilon):
mean_gradients = mean_gradients * decay + (1.0 - decay) * gradients
mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
moment = momentum * moment + learning_rate / np.sqrt(
mean_square - mean_gradients * mean_gradients + epsilon) * gradients
variable = variable - moment
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_rmsprop():
learning_rate, decay, momentum, epsilon, centered = [0.5, 0.8, 0.9, 1e-3, True]
variable_np = np.array([1.0, 2.0], dtype=np.float32)
gradients_np = np.array([0.1, 0.2], dtype=np.float32)
mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
moment_np = np.array([0.0, 0.0], dtype=np.float32)
variable_ms = Tensor(variable_np)
gradients_ms = Tensor(gradients_np)
mean_gradients_ms = Tensor(mean_gradients_np)
mean_square_ms = Tensor(mean_square_np)
moment_ms = Tensor(moment_np)
if centered:
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
learning_rate, decay, momentum, epsilon)
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
else:
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
learning_rate, decay, momentum, epsilon)
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
error = np.ones(shape=variable_np.shape) * 10e-6
diff = variable_ms.asnumpy() - variable_np
assert np.all(diff < error)
error = np.ones(shape=gradients_np.shape) * 10e-6
diff = gradients_ms.asnumpy() - gradients_np
assert np.all(diff < error)
error = np.ones(shape=mean_gradients_np.shape) * 10e-6
diff = mean_gradients_ms.asnumpy() - mean_gradients_np
assert np.all(diff < error)
error = np.ones(shape=mean_square_np.shape) * 10e-6
diff = mean_square_ms.asnumpy() - mean_square_np
assert np.all(diff < error)
error = np.ones(shape=moment_np.shape) * 10e-6
diff = moment_ms.asnumpy() - moment_np
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_rmspropcenter():
learning_rate, decay, momentum, epsilon, centered = [0.1, 0.3, 0.9, 1.0, False]
variable_np = np.array([1.0, 2.0], dtype=np.float32)
gradients_np = np.array([0.1, 0.2], dtype=np.float32)
mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
moment_np = np.array([0.0, 0.0], dtype=np.float32)
variable_ms = Tensor(variable_np)
gradients_ms = Tensor(gradients_np)
mean_gradients_ms = Tensor(mean_gradients_np)
mean_square_ms = Tensor(mean_square_np)
moment_ms = Tensor(moment_np)
if centered:
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
learning_rate, decay, momentum, epsilon)
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
else:
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
learning_rate, decay, momentum, epsilon)
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
error = np.ones(shape=variable_np.shape) * 10e-6
diff = variable_ms.asnumpy() - variable_np
assert np.all(diff < error)
error = np.ones(shape=gradients_np.shape) * 10e-6
diff = gradients_ms.asnumpy() - gradients_np
assert np.all(diff < error)
error = np.ones(shape=mean_gradients_np.shape) * 10e-6
diff = mean_gradients_ms.asnumpy() - mean_gradients_np
assert np.all(diff < error)
error = np.ones(shape=mean_square_np.shape) * 10e-6
diff = mean_square_ms.asnumpy() - mean_square_np
assert np.all(diff < error)
error = np.ones(shape=moment_np.shape) * 10e-6
diff = moment_ms.asnumpy() - moment_np
assert np.all(diff < error)