You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/nlp/fasttext/eval.py

141 lines
5.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""FastText for Evaluation"""
import argparse
import numpy as np
import mindspore.nn as nn
import mindspore.common.dtype as mstype
import mindspore.ops.operations as P
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as deC
from mindspore import context
from src.fasttext_model import FastText
parser = argparse.ArgumentParser(description='fasttext')
parser.add_argument('--data_path', type=str, help='infer dataset path..')
parser.add_argument('--data_name', type=str, required=True, default='ag',
help='dataset name. eg. ag, dbpedia')
parser.add_argument("--model_ckpt", type=str, required=True,
help="existed checkpoint address.")
args = parser.parse_args()
if args.data_name == "ag":
from src.config import config_ag as config
target_label1 = ['0', '1', '2', '3']
elif args.data_name == 'dbpedia':
from src.config import config_db as config
target_label1 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13']
elif args.data_name == 'yelp_p':
from src.config import config_yelpp as config
target_label1 = ['0', '1']
context.set_context(
mode=context.GRAPH_MODE,
save_graphs=False,
device_target="Ascend")
class FastTextInferCell(nn.Cell):
"""
Encapsulation class of FastText network infer.
Args:
network (nn.Cell): FastText model.
Returns:
Tuple[Tensor, Tensor], predicted_ids
"""
def __init__(self, network):
super(FastTextInferCell, self).__init__(auto_prefix=False)
self.network = network
self.argmax = P.ArgMaxWithValue(axis=1, keep_dims=True)
self.log_softmax = nn.LogSoftmax(axis=1)
def construct(self, src_tokens, src_tokens_lengths):
"""construct fasttext infer cell"""
prediction = self.network(src_tokens, src_tokens_lengths)
predicted_idx = self.log_softmax(prediction)
predicted_idx, _ = self.argmax(predicted_idx)
return predicted_idx
def load_infer_dataset(batch_size, datafile, bucket):
"""data loader for infer"""
def batch_per_bucket(bucket_length, input_file):
input_file = input_file + '/test_dataset_bs_' + str(bucket_length) + '.mindrecord'
if not input_file:
raise FileNotFoundError("input file parameter must not be empty.")
data_set = ds.MindDataset(input_file,
columns_list=['src_tokens', 'src_tokens_length', 'label_idx'])
type_cast_op = deC.TypeCast(mstype.int32)
data_set = data_set.map(operations=type_cast_op, input_columns="src_tokens")
data_set = data_set.map(operations=type_cast_op, input_columns="src_tokens_length")
data_set = data_set.map(operations=type_cast_op, input_columns="label_idx")
data_set = data_set.batch(batch_size, drop_remainder=False)
return data_set
for i, _ in enumerate(bucket):
bucket_len = bucket[i]
ds_per = batch_per_bucket(bucket_len, datafile)
if i == 0:
data_set = ds_per
else:
data_set = data_set + ds_per
return data_set
def run_fasttext_infer():
"""run infer with FastText"""
dataset = load_infer_dataset(batch_size=config.batch_size, datafile=args.data_path, bucket=config.test_buckets)
fasttext_model = FastText(config.vocab_size, config.embedding_dims, config.num_class)
parameter_dict = load_checkpoint(args.model_ckpt)
load_param_into_net(fasttext_model, parameter_dict=parameter_dict)
ft_infer = FastTextInferCell(fasttext_model)
model = Model(ft_infer)
predictions = []
target_sens = []
for batch in dataset.create_dict_iterator(output_numpy=True, num_epochs=1):
target_sens.append(batch['label_idx'])
src_tokens = Tensor(batch['src_tokens'], mstype.int32)
src_tokens_length = Tensor(batch['src_tokens_length'], mstype.int32)
predicted_idx = model.predict(src_tokens, src_tokens_length)
predictions.append(predicted_idx.asnumpy())
from sklearn.metrics import accuracy_score, classification_report
target_sens = np.array(target_sens).flatten()
merge_target_sens = []
for target_sen in target_sens:
merge_target_sens.extend(target_sen)
target_sens = merge_target_sens
predictions = np.array(predictions).flatten()
merge_predictions = []
for prediction in predictions:
merge_predictions.extend(prediction)
predictions = merge_predictions
acc = accuracy_score(target_sens, predictions)
result_report = classification_report(target_sens, predictions, target_names=target_label1)
print("********Accuracy: ", acc)
print(result_report)
if __name__ == '__main__':
run_fasttext_infer()