You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/c_api_test.cc

1567 lines
48 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <iostream>
#include <memory>
#include <vector>
#include <string>
#include "utils/log_adapter.h"
#include "common/utils.h"
#include "common/common.h"
#include "gtest/gtest.h"
#include "securec.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/status.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/iterator.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/tensor_shape.h"
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/include/samplers.h"
#include "minddata/dataset/engine/datasetops/source/voc_op.h"
using namespace mindspore::dataset::api;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;
using mindspore::dataset::TensorImpl;
using mindspore::dataset::DataType;
using mindspore::dataset::Status;
using mindspore::dataset::BorderType;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestPipeline, TestBatchAndRepeat) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBatchAndRepeat.";
// Create a Mnist Dataset
std::string folder_path = datasets_root_path_ + "/testMnistData/";
std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 2;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestMnistFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMnistFail1.";
// Create a Mnist Dataset
std::shared_ptr<Dataset> ds = Mnist("", RandomSampler(false, 10));
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestTensorOpsAndMap) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTensorOpsAndMap.";
// Create a Mnist Dataset
std::string folder_path = datasets_root_path_ + "/testMnistData/";
std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 20));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> resize_op = vision::Resize({30, 30});
EXPECT_NE(resize_op, nullptr);
std::shared_ptr<TensorOperation> center_crop_op = vision::CenterCrop({16, 16});
EXPECT_NE(center_crop_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({resize_op, center_crop_op});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 40);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestUniformAugWithOps) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUniformAugWithOps.";
// Create a Mnist Dataset
std::string folder_path = datasets_root_path_ + "/testMnistData/";
std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 20));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 1;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> resize_op = vision::Resize({30, 30});
EXPECT_NE(resize_op, nullptr);
std::shared_ptr<TensorOperation> random_crop_op = vision::RandomCrop({28, 28});
EXPECT_NE(random_crop_op, nullptr);
std::shared_ptr<TensorOperation> center_crop_op = vision::CenterCrop({16, 16});
EXPECT_NE(center_crop_op, nullptr);
std::shared_ptr<TensorOperation> uniform_aug_op = vision::UniformAugment({random_crop_op, center_crop_op}, 2);
EXPECT_NE(uniform_aug_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({resize_op, uniform_aug_op});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomFlip) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomFlip.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5);
EXPECT_NE(random_vertical_flip_op, nullptr);
std::shared_ptr<TensorOperation> random_horizontal_flip_op = vision::RandomHorizontalFlip(0.5);
EXPECT_NE(random_horizontal_flip_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestImageFolderBatchAndRepeat) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestImageFolderBatchAndRepeat.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 2;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestImageFolderFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestImageFolderFail1.";
// Create an ImageFolder Dataset
std::shared_ptr<Dataset> ds = ImageFolder("", true, nullptr);
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestImageFolderWithSamplers) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestImageFolderWithSamplers.";
std::shared_ptr<SamplerObj> sampl = DistributedSampler(2, 1);
EXPECT_NE(sampl, nullptr);
sampl = PKSampler(3);
EXPECT_NE(sampl, nullptr);
sampl = RandomSampler(false, 12);
EXPECT_NE(sampl, nullptr);
sampl = SequentialSampler(0, 12);
EXPECT_NE(sampl, nullptr);
std::vector<double> weights = {0.9, 0.8, 0.68, 0.7, 0.71, 0.6, 0.5, 0.4, 0.3, 0.5, 0.2, 0.1};
sampl = WeightedRandomSampler(weights, 12);
EXPECT_NE(sampl, nullptr);
std::vector<int64_t> indices = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23};
sampl = SubsetRandomSampler(indices);
EXPECT_NE(sampl, nullptr);
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampl);
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 2;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 12);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestPad) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPad.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> pad_op1 = vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric);
EXPECT_NE(pad_op1, nullptr);
std::shared_ptr<TensorOperation> pad_op2 = vision::Pad({1}, {1, 1, 1}, BorderType::kEdge);
EXPECT_NE(pad_op2, nullptr);
std::shared_ptr<TensorOperation> pad_op3 = vision::Pad({1, 4});
EXPECT_NE(pad_op3, nullptr);
// Create a Map operation on ds
ds = ds->Map({pad_op1, pad_op2, pad_op3});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCutOut) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOut.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> cut_out1 = vision::CutOut(30, 5);
EXPECT_NE(cut_out1, nullptr);
std::shared_ptr<TensorOperation> cut_out2 = vision::CutOut(30);
EXPECT_NE(cut_out2, nullptr);
// Create a Map operation on ds
ds = ds->Map({cut_out1, cut_out2});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestNormalize) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalize.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> normalize = vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0});
EXPECT_NE(normalize, nullptr);
// Create a Map operation on ds
ds = ds->Map({normalize});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestDecode) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDecode.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> decode = vision::Decode(true);
EXPECT_NE(decode, nullptr);
// Create a Map operation on ds
ds = ds->Map({decode});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestShuffleDataset) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestShuffleDataset.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Shuffle operation on ds
int32_t shuffle_size = 10;
ds = ds->Shuffle(shuffle_size);
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 2;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSkipDataset) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSkipDataset.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Skip operation on ds
int32_t count = 3;
ds = ds->Skip(count);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
MS_LOG(INFO) << "Number of rows: " << i;
// Expect 10-3=7 rows
EXPECT_EQ(i, 7);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSkipDatasetError1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSkipDatasetError1.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Skip operation on ds with invalid count input
int32_t count = -1;
ds = ds->Skip(count);
// Expect nullptr for invalid input skip_count
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestTakeDatasetDefault) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTakeDatasetDefault.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 7));
EXPECT_NE(ds, nullptr);
// Create a Take operation on ds, dafault count = -1
ds = ds->Take();
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
MS_LOG(INFO) << "Number of rows: " << i;
// Expect 7 rows
EXPECT_EQ(i, 7);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestTakeDatasetNormal) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTakeDatasetNormal.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 8));
EXPECT_NE(ds, nullptr);
// Create a Take operation on ds
ds = ds->Take(5);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
MS_LOG(INFO) << "Number of rows: " << i;
// Expect 5 rows
EXPECT_EQ(i, 5);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestTakeDatasetError1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTakeDatasetError1.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Take operation on ds with invalid count input
int32_t count = -5;
ds = ds->Take(count);
// Expect nullptr for invalid input take_count
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestCifar10Dataset) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar10Dataset.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
EXPECT_NE(row.find("image"), row.end());
EXPECT_NE(row.find("label"), row.end());
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCifar10DatasetFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar10DatasetFail1.";
// Create a Cifar10 Dataset
std::shared_ptr<Dataset> ds = Cifar10("", RandomSampler(false, 10));
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestCifar100Dataset) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar100Dataset.";
// Create a Cifar100 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar100Data/";
std::shared_ptr<Dataset> ds = Cifar100(folder_path, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
EXPECT_NE(row.find("image"), row.end());
EXPECT_NE(row.find("coarse_label"), row.end());
EXPECT_NE(row.find("fine_label"), row.end());
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCifar100DatasetFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar100DatasetFail1.";
// Create a Cifar100 Dataset
std::shared_ptr<Dataset> ds = Cifar100("", RandomSampler(false, 10));
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestRandomColorAdjust) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomColorAdjust.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> random_color_adjust1 = vision::RandomColorAdjust({1.0}, {0.0}, {0.5}, {0.5});
EXPECT_NE(random_color_adjust1, nullptr);
std::shared_ptr<TensorOperation> random_color_adjust2 = vision::RandomColorAdjust({1.0, 1.0}, {0.0, 0.0}, {0.5, 0.5},
{0.5, 0.5});
EXPECT_NE(random_color_adjust2, nullptr);
std::shared_ptr<TensorOperation> random_color_adjust3 = vision::RandomColorAdjust({0.5, 1.0}, {0.0, 0.5}, {0.25, 0.5},
{0.25, 0.5});
EXPECT_NE(random_color_adjust3, nullptr);
std::shared_ptr<TensorOperation> random_color_adjust4 = vision::RandomColorAdjust();
EXPECT_NE(random_color_adjust4, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_color_adjust1, random_color_adjust2, random_color_adjust3, random_color_adjust4});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRandomRotation) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomRotation.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> random_rotation_op = vision::RandomRotation({-180, 180});
EXPECT_NE(random_rotation_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_rotation_op});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestProjectMap) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestProjectMap.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create objects for the tensor ops
std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5);
EXPECT_NE(random_vertical_flip_op, nullptr);
// Create a Map operation on ds
ds = ds->Map({random_vertical_flip_op}, {}, {}, {"image", "label"});
EXPECT_NE(ds, nullptr);
// Create a Project operation on ds
std::vector<std::string> column_project = {"image"};
ds = ds->Project(column_project);
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestZipSuccess) {
// Testing the member zip() function
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestZipSuccess.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Project operation on ds
std::vector<std::string> column_project = {"image"};
ds = ds->Project(column_project);
EXPECT_NE(ds, nullptr);
// Create an ImageFolder Dataset
std::shared_ptr<Dataset> ds1 = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds1, nullptr);
// Create a Rename operation on ds (so that the 3 datasets we are going to zip have distinct column names)
ds1 = ds1->Rename({"image", "label"}, {"col1", "col2"});
EXPECT_NE(ds1, nullptr);
folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds2 = Cifar10(folder_path, RandomSampler(false, 10));
EXPECT_NE(ds2, nullptr);
// Create a Project operation on ds
column_project = {"label"};
ds2 = ds2->Project(column_project);
EXPECT_NE(ds2, nullptr);
// Create a Zip operation on the datasets
ds = ds->Zip({ds1, ds2});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check zipped column names
EXPECT_EQ(row.size(), 4);
EXPECT_NE(row.find("image"), row.end());
EXPECT_NE(row.find("label"), row.end());
EXPECT_NE(row.find("col1"), row.end());
EXPECT_NE(row.find("col2"), row.end());
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestZipSuccess2) {
// Testing the static zip() function
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestZipSuccess2.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 9));
EXPECT_NE(ds, nullptr);
std::shared_ptr<Dataset> ds2 = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds2, nullptr);
// Create a Rename operation on ds (so that the 2 datasets we are going to zip have distinct column names)
ds = ds->Rename({"image", "label"}, {"col1", "col2"});
EXPECT_NE(ds, nullptr);
// Create a Zip operation on the datasets
ds = Zip({ds, ds2});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check zipped column names
EXPECT_EQ(row.size(), 4);
EXPECT_NE(row.find("image"), row.end());
EXPECT_NE(row.find("label"), row.end());
EXPECT_NE(row.find("col1"), row.end());
EXPECT_NE(row.find("col2"), row.end());
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 9);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestZipFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestZipFail.";
// We expect this test to fail because we are the both datasets we are zipping have "image" and "label" columns
// and zip doesn't accept datasets with same column names
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create an ImageFolder Dataset
std::shared_ptr<Dataset> ds1 = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds1, nullptr);
// Create a Zip operation on the datasets
ds = Zip({ds, ds1});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestZipFail2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestZipFail2.";
// This case is expected to fail because the input dataset is empty.
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Zip operation on the datasets
// Input dataset to zip is empty
ds = Zip({});
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestRenameSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRenameSuccess.";
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create a Rename operation on ds
ds = ds->Rename({"image", "label"}, {"col1", "col2"});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
EXPECT_NE(row.find("col1"), row.end());
EXPECT_NE(row.find("col2"), row.end());
EXPECT_EQ(row.find("image"), row.end());
EXPECT_EQ(row.find("label"), row.end());
while (row.size() != 0) {
i++;
auto image = row["col1"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 20);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestRenameFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRenameFail.";
// We expect this test to fail because input and output in Rename are not the same size
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create a Rename operation on ds
ds = ds->Rename({"image", "label"}, {"col2"});
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestVOCSegmentation) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentation.";
// Create a VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", {}, false, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check if VOCOp read correct images/targets
using Tensor = mindspore::dataset::Tensor;
std::string expect_file[] = {"32", "33", "39", "32", "33", "39"};
uint64_t i = 0;
while (row.size() != 0) {
auto image = row["image"];
auto target = row["target"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
MS_LOG(INFO) << "Tensor target shape: " << target->shape();
std::shared_ptr<Tensor> expect_image;
Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image);
EXPECT_EQ(*image, *expect_image);
std::shared_ptr<Tensor> expect_target;
Tensor::CreateFromFile(folder_path + "/SegmentationClass/" + expect_file[i] + ".png", &expect_target);
EXPECT_EQ(*target, *expect_target);
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 6);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestVOCSegmentationError1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentationError1.";
// Create a VOC Dataset
std::map<std::string, int32_t> class_index;
class_index["car"] = 0;
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", class_index, false, RandomSampler(false, 6));
// Expect nullptr for segmentation task with class_index
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestVOCInvalidTaskOrMode) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCInvalidTaskOrMode.";
// Create a VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds_1 = VOC(folder_path, "Classification", "train", {}, false, SequentialSampler(0, 3));
// Expect nullptr for invalid task
EXPECT_EQ(ds_1, nullptr);
std::shared_ptr<Dataset> ds_2 = VOC(folder_path, "Segmentation", "validation", {}, false, RandomSampler(false, 4));
// Expect nullptr for invalid mode
EXPECT_EQ(ds_2, nullptr);
}
TEST_F(MindDataTestPipeline, TestVOCDetection) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCDetection.";
// Create a VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, false, SequentialSampler(0, 4));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check if VOCOp read correct images/labels
std::string expect_file[] = {"15", "32", "33", "39"};
uint32_t expect_num[] = {5, 5, 4, 3};
uint64_t i = 0;
while (row.size() != 0) {
auto image = row["image"];
auto label = row["label"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
MS_LOG(INFO) << "Tensor label shape: " << label->shape();
std::shared_ptr<Tensor> expect_image;
Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image);
EXPECT_EQ(*image, *expect_image);
std::shared_ptr<Tensor> expect_label;
Tensor::CreateFromMemory(TensorShape({1, 1}), DataType(DataType::DE_UINT32), nullptr, &expect_label);
expect_label->SetItemAt({0, 0}, expect_num[i]);
EXPECT_EQ(*label, *expect_label);
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 4);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestVOCClassIndex) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCClassIndex.";
// Create a VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::map<std::string, int32_t> class_index;
class_index["car"] = 0;
class_index["cat"] = 1;
class_index["train"] = 9;
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", class_index, false, SequentialSampler(0, 6));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check if VOCOp read correct labels
// When we provide class_index, label of ["car","cat","train"] become [0,1,9]
std::shared_ptr<Tensor> expect_label;
Tensor::CreateFromMemory(TensorShape({1, 1}), DataType(DataType::DE_UINT32), nullptr, &expect_label);
uint32_t expect[] = {9, 9, 9, 1, 1, 0};
uint64_t i = 0;
while (row.size() != 0) {
auto image = row["image"];
auto label = row["label"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
MS_LOG(INFO) << "Tensor label shape: " << label->shape();
expect_label->SetItemAt({0, 0}, expect[i]);
EXPECT_EQ(*label, *expect_label);
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 6);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestConcatSuccess) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestConcatSuccess.";
// Create an ImageFolder Dataset
// Column names: {"image", "label"}
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Cifar10 Dataset
// Column names: {"image", "label"}
folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds2 = Cifar10(folder_path, RandomSampler(false, 9));
EXPECT_NE(ds2, nullptr);
// Create a Project operation on ds
ds = ds->Project({"image"});
EXPECT_NE(ds, nullptr);
ds2 = ds2->Project({"image"});
EXPECT_NE(ds, nullptr);
// Create a Concat operation on the ds
ds = ds->Concat({ds2});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 19);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestConcatSuccess2) {
// Test "+" operator to concat two datasets
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestConcatSuccess2.";
// Create an ImageFolder Dataset
// Column names: {"image", "label"}
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Cifar10 Dataset
// Column names: {"image", "label"}
folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds2 = Cifar10(folder_path, RandomSampler(false, 9));
EXPECT_NE(ds2, nullptr);
// Create a Project operation on ds
ds = ds->Project({"image"});
EXPECT_NE(ds, nullptr);
ds2 = ds2->Project({"image"});
EXPECT_NE(ds, nullptr);
// Create a Concat operation on the ds
ds = ds + ds2;
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 19);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestConcatFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestConcatFail1.";
// This case is expected to fail because the input column names of concatenated datasets are not the same
// Create an ImageFolder Dataset
// Column names: {"image", "label"}
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
std::shared_ptr<Dataset> ds2 = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Rename operation on ds
ds2 = ds2->Rename({"image", "label"}, {"col1", "col2"});
EXPECT_NE(ds, nullptr);
// Create a Project operation on the ds
// Name of datasets to concat doesn't not match
ds = ds->Concat({ds2});
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 1;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestConcatFail2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestConcatFail2.";
// This case is expected to fail because the input dataset is empty.
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create a Project operation on the ds
// Input dataset to concat is empty
ds = ds->Concat({});
EXPECT_EQ(ds, nullptr);
}