|
4 years ago | |
---|---|---|
.. | ||
scripts | 4 years ago | |
src | 4 years ago | |
README.md | 4 years ago | |
__init__.py | 4 years ago | |
eval.py | 4 years ago | |
mindspore_hub_conf.py | 4 years ago | |
train.py | 4 years ago |
README.md
Contents
- Contents
- TernaryBERT Description
- Model Architecture
- Dataset
- Environment Requirements
- Quick Start
- Script Description
- Description of Random Situation
- ModelZoo Homepage
TernaryBERT Description
TernaryBERT ternarizes the weights in a fine-tuned BERT or TinyBERT model and achieves competitive performances in natural language processing tasks. TernaryBERT outperforms the other BERT quantization methods, and even achieves comparable performance as the full-precision model while being 14.9x smaller
Paper: Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang and Qun Liu. TernaryBERT: Distillation-aware Ultra-low Bit BERT. arXiv preprint arXiv:2009.12812.
Model Architecture
The backbone structure of TernaryBERT is transformer, the transformer contains six encoder modules, one encoder contains one self-attention module and one self-attention module contains one attention module.
Dataset
- Download glue dataset for task distillation. Convert dataset files from json format to tfrecord format, please refer to run_classifier.py which in BERT repository.
Environment Requirements
- Hardware(GPU)
- Prepare hardware environment with GPU processor.
- Framework
- For more information, please check the resources below:
- Software:
- sklearn
Quick Start
After installing MindSpore via the official website, you can start training and evaluation as follows:
# run training example
sh scripts/run_train.sh
Before running the shell script, please set the `task_name`, `teacher_model_dir`, `student_model_dir` and `data_dir` in the run_train.sh file first.
# run evaluation example
sh scripts/run_eval.sh
Before running the shell script, please set the `task_name`, `model_dir` and `data_dir` in the run_eval.sh file first.
Script Description
Script and Sample Code
.
└─ternarybert
├─README.md
├─scripts
├─run_train.sh # shell script for training phase
├─run_eval.sh # shell script for evaluation phase
├─src
├─__init__.py
├─assessment_method.py # assessment method for evaluation
├─cell_wrapper.py # cell for training
├─config.py # parameter configuration for training and evaluation phase
├─dataset.py # data processing
├─quant.py # function for quantization
├─tinybert_model.py # backbone code of network
├─utils.py # util function
├─__init__.py
├─train.py # train net for task distillation
├─eval.py # evaluate net after task distillation
Script Parameters
Train
usage: train.py [--h] [--device_target {GPU,Ascend}] [--do_eval {true,false}] [--epoch_size EPOCH_SIZE]
[--device_id DEVICE_ID] [--do_shuffle {true,false}] [--enable_data_sink {true,false}] [--save_ckpt_step SAVE_CKPT_STEP]
[--eval_ckpt_step EVAL_CKPT_STEP] [--max_ckpt_num MAX_CKPT_NUM] [--data_sink_steps DATA_SINK_STEPS]
[--teacher_model_dir TEACHER_MODEL_DIR] [--student_model_dir STUDENT_MODEL_DIR] [--data_dir DATA_DIR]
[--output_dir OUTPUT_DIR] [--task_name {sts-b,qnli,mnli}] [--dataset_type DATASET_TYPE] [--seed SEED]
[--train_batch_size TRAIN_BATCH_SIZE] [--eval_batch_size EVAL_BATCH_SIZE]
options:
--device_target Device where the code will be implemented: "GPU" | "Ascend", default is "GPU"
--do_eval Do eval task during training or not: "true" | "false", default is "true"
--epoch_size Epoch size for train phase: N, default is 3
--device_id Device id: N, default is 0
--do_shuffle Enable shuffle for train dataset: "true" | "false", default is "true"
--enable_data_sink Enable data sink: "true" | "false", default is "true"
--save_ckpt_step If do_eval is false, the checkpoint will be saved every save_ckpt_step: N, default is 50
--eval_ckpt_step If do_eval is true, the evaluation will be ran every eval_ckpt_step: N, default is 50
--max_ckpt_num The number of checkpoints will not be larger than max_ckpt_num: N, default is 50
--data_sink_steps Sink steps for each epoch: N, default is 1
--teacher_model_dir The checkpoint directory of teacher model: PATH, default is ""
--student_model_dir The checkpoint directory of student model: PATH, default is ""
--data_dir Data directory: PATH, default is ""
--output_dir The output checkpoint directory: PATH, default is "./"
--task_name The name of the task to train: "sts-b" | "qnli" | "mnli", default is "sts-b"
--dataset_type The name of the task to train: "tfrecord" | "mindrecord", default is "tfrecord"
--seed The random seed: N, default is 1
--train_batch_size Batch size for training: N, default is 16
--eval_batch_size Eval Batch size in callback: N, default is 32
Eval
usage: eval.py [--h] [--device_target {GPU,Ascend}] [--device_id DEVICE_ID] [--model_dir MODEL_DIR] [--data_dir DATA_DIR]
[--task_name {sts-b,qnli,mnli}] [--dataset_type DATASET_TYPE] [--batch_size BATCH_SIZE]
options:
--device_target Device where the code will be implemented: "GPU" | "Ascend", default is "GPU"
--device_id Device id: N, default is 0
--model_dir The checkpoint directory of model: PATH, default is ""
--data_dir Data directory: PATH, default is ""
--task_name The name of the task to train: "sts-b" | "qnli" | "mnli", default is "sts-b"
--dataset_type The name of the task to train: "tfrecord" | "mindrecord", default is "tfrecord"
--batch_size Batch size for evaluating: N, default is 32
Parameters
config.py
contains parameters of glue tasks, train, optimizer, eval, teacher BERT model and student BERT model.
Parameters for glue task:
num_labels the numbers of labels: N.
seq_length length of input sequence: N
task_type the type of task: "classification" | "regression"
metrics the eval metric for task: Accuracy | F1 | Pearsonr | Matthews
Parameters for train:
batch_size batch size of input dataset: N, default is 16
loss_scale_value initial value of loss scale: N, default is 2^16
scale_factor factor used to update loss scale: N, default is 2
scale_window steps for once updatation of loss scale: N, default is 50
Parameters for optimizer:
learning_rate value of learning rate: Q, default is 5e-5
end_learning_rate value of end learning rate: Q, must be positive, default is 1e-14
power power: Q, default is 1.0
weight_decay weight decay: Q, default is 1e-4
eps term added to the denominator to improve numerical stability: Q, default is 1e-6
warmup_ratio the ratio of warmup steps to total steps: Q, default is 0.1
Parameters for eval:
batch_size batch size of input dataset: N, default is 32
Parameters for teacher bert network:
seq_length length of input sequence: N, default is 128
vocab_size size of each embedding vector: N, must be consistent with the dataset you use. Default is 30522
hidden_size size of bert encoder layers: N
num_hidden_layers number of hidden layers: N
num_attention_heads number of attention heads: N, default is 12
intermediate_size size of intermediate layer: N
hidden_act activation function used: ACTIVATION, default is "gelu"
hidden_dropout_prob dropout probability for BertOutput: Q
attention_probs_dropout_prob dropout probability for BertAttention: Q
max_position_embeddings maximum length of sequences: N, default is 512
save_ckpt_step number for saving checkponit: N, default is 100
max_ckpt_num maximum number for saving checkpoint: N, default is 1
type_vocab_size size of token type vocab: N, default is 2
initializer_range initialization value of TruncatedNormal: Q, default is 0.02
use_relative_positions use relative positions or not: True | False, default is False
dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32
compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float32
Parameters for student bert network:
seq_length length of input sequence: N, default is 128
vocab_size size of each embedding vector: N, must be consistent with the dataset you use. Default is 30522
hidden_size size of bert encoder layers: N
num_hidden_layers number of hidden layers: N
num_attention_heads number of attention heads: N, default is 12
intermediate_size size of intermediate layer: N
hidden_act activation function used: ACTIVATION, default is "gelu"
hidden_dropout_prob dropout probability for BertOutput: Q
attention_probs_dropout_prob dropout probability for BertAttention: Q
max_position_embeddings maximum length of sequences: N, default is 512
save_ckpt_step number for saving checkponit: N, default is 100
max_ckpt_num maximum number for saving checkpoint: N, default is 1
type_vocab_size size of token type vocab: N, default is 2
initializer_range initialization value of TruncatedNormal: Q, default is 0.02
use_relative_positions use relative positions or not: True | False, default is False
dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32
compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float32
do_quant do activation quantilization or not: True | False, default is True
embedding_bits the quant bits of embedding: N, default is 2
weight_bits the quant bits of weight: N, default is 2
cls_dropout_prob dropout probability for BertModelCLS: Q
activation_init initialization value of activation quantilization: Q, default is 2.5
is_lgt_fit use label ground truth loss or not: True | False, default is False
Training Process
Training
Before running the command below, please check teacher_model_dir
, student_model_dir
and data_dir
has been set. Please set the path to be the absolute full path, e.g:"/home/xxx/model_dir/".
python
python train.py --task_name='sts-b' --teacher_model_dir='/home/xxx/model_dir/' --student_model_dir='/home/xxx/model_dir/' --data_dir='/home/xxx/data_dir/'
shell
sh scripts/run_train.sh
The shell command above will run in the background, you can view the results the file log.txt. The python command will run in the console, you can view the results on the interface. After training, you will get some checkpoint files under the script folder by default. The eval metric value will be achieved as follows:
step: 50, Pearsonr 72.50008506516072, best_Pearsonr 72.50008506516072
step 100, Pearsonr 81.3580301181608, best_Pearsonr 81.3580301181608
step 150, Pearsonr 83.60461724688754, best_Pearsonr 83.60461724688754
step 200, Pearsonr 82.23210161651377, best_Pearsonr 83.60461724688754
...
step 1050, Pearsonr 87.5606067964618332, best_Pearsonr 87.58388835685436
Evaluation Process
Evaluation
If you want to after running and continue to eval.
evaluation on STS-B dataset
python
python eval.py --task_name='sts-b' --model_dir='/home/xxx/model_dir/' --data_dir='/home/xxx/data_dir/'
shell
sh scripts/run_eval.sh
The shell command above will run in the background, you can view the results the file log.txt. The python command will run in the console, you can view the results on the interface. The metric value of the test dataset will be as follows:
eval step: 0, Pearsonr: 96.91109003302263
eval step: 1, Pearsonr: 95.6800637493701
eval step: 2, Pearsonr: 94.23823082886167
...
The best Pearsonr: 87.58388835685437
evaluation on QNLI dataset
python
python eval.py --task_name='qnli' --model_dir='/home/xxx/model_dir/' --data_dir='/home/xxx/data_dir/'
shell
sh scripts/run_eval.sh
The shell command above will run in the background, you can view the results the file log.txt. The python command will run in the console, you can view the results on the interface. The metric value of the test dataset will be as follows:
eval step: 0, Accuracy: 96.875
eval step: 1, Accuracy: 89.0625
eval step: 2, Accuracy: 89.58333333333334
...
The best Accuracy: 90.426505583013
evaluation on MNLI dataset
python
python eval.py --task_name='mnli' --model_dir='/home/xxx/model_dir/' --data_dir='/home/xxx/data_dir/'
shell
sh scripts/run_eval.sh
The shell command above will run in the background, you can view the results the file log.txt. The python command will run in the console, you can view the results on the interface. The metric value of the test dataset will be as follows:
eval step: 0, Accuracy: 90.625
eval step: 1, Accuracy: 81.25
eval step: 2, Accuracy: 79.16666666666666
...
The best Accuracy: 83.58388835685436
Model Description
Performance
training Performance
Parameters | GPU |
---|---|
Model Version | TernaryBERT |
Resource | NV SMX2 V100-32G |
uploaded Date | 02/01/2020 |
MindSpore Version | 1.1.0 |
Dataset | STS-B |
batch_size | 16 |
Metric value | 87.5839 |
Speed | 0.19s/step |
Total time | 6.7min(3epoch, 1p) |
Description of Random Situation
In train.py, we set do_shuffle to shuffle the dataset.
In config.py, we set the hidden_dropout_prob, attention_pros_dropout_prob and cls_dropout_prob to dropout some network node.
ModelZoo Homepage
Please check the official homepage.