You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
2.9 KiB
90 lines
2.9 KiB
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Summary gpu st."""
|
|
import os
|
|
import random
|
|
import tempfile
|
|
import shutil
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.ops import operations as P
|
|
from mindspore.train.summary.summary_record import SummaryRecord
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
class SummaryNet(nn.Cell):
|
|
"""Summary net."""
|
|
def __init__(self, tag_tuple=None, scalar=1):
|
|
super(SummaryNet, self).__init__()
|
|
self.summary_s = P.ScalarSummary()
|
|
self.summary_i = P.ImageSummary()
|
|
self.summary_t = P.TensorSummary()
|
|
self.histogram_summary = P.HistogramSummary()
|
|
self.add = P.TensorAdd()
|
|
self.tag_tuple = tag_tuple
|
|
self.scalar = scalar
|
|
|
|
def construct(self, x, y, image):
|
|
"""Run summary net."""
|
|
self.summary_i("image", image)
|
|
self.summary_s("x1", x)
|
|
z = self.add(x, y)
|
|
self.summary_t("z1", z)
|
|
self.histogram_summary("histogram", z)
|
|
return z
|
|
|
|
|
|
def train_summary_record(test_writer, steps):
|
|
"""Train and record summary."""
|
|
net = SummaryNet()
|
|
out_me_dict = {}
|
|
for i in range(0, steps):
|
|
x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
|
|
y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
|
|
image = Tensor(np.array([[[[1.2]]]]).astype(np.float32))
|
|
out_put = net(x, y, image)
|
|
test_writer.record(i)
|
|
out_me_dict[i] = out_put.asnumpy()
|
|
return out_me_dict
|
|
|
|
|
|
class TestGpuSummary:
|
|
"""Test Gpu summary."""
|
|
summary_dir = tempfile.mkdtemp(suffix='_gpu_summary')
|
|
|
|
def setup_method(self):
|
|
"""Run before method."""
|
|
if not os.path.exists(self.summary_dir):
|
|
os.mkdir(self.summary_dir)
|
|
|
|
def teardown_emthod(self):
|
|
"""Run after method."""
|
|
if os.path.exists(self.summary_dir):
|
|
shutil.rmtree(self.summary_dir)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_summary_step10_summaryrecord1(self):
|
|
"""Test record 10 step summary."""
|
|
with SummaryRecord(self.summary_dir) as test_writer:
|
|
train_summary_record(test_writer, steps=10)
|