You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/pynative/parser/test_parser_construct.py

71 lines
2.2 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_parser_construct """
import pytest
import numpy as np
from mindspore import context
from mindspore.nn import Cell
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
def setup_module():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_parser_construct():
class ParentNet(Cell):
def __init__(self):
super().__init__()
self.relu = P.ReLU()
def construct(self, x):
return self.relu(x)
class UncleNet(Cell):
def __init__(self):
super(UncleNet, self).__init__()
self.sigmoid = P.Sigmoid()
def construct(self, x):
return self.sigmoid(x)
class Net(UncleNet, ParentNet):
def __init__(self):
super().__init__()
super(UncleNet, self).__init__()
def construct(self, x):
return super(UncleNet, self).construct(x)
input_np_x = np.ones([2, 3, 4, 5]).astype(np.float32)
out_np = np.ones([2, 3, 4, 5]).astype(np.float32)
input_me = Tensor(input_np_x)
output_grad_me = Tensor(out_np)
net = Net()
out_me = net(input_me)
net1 = Net()
grad = GradOperation(sens_param=True)
grad_op = grad(net1)
grad_me = grad_op(input_me, output_grad_me)
assert np.allclose(input_np_x, out_me.asnumpy(), 0.001, 0.001)
assert np.allclose(input_np_x, grad_me.asnumpy(), 0.001, 0.001)