You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/ir/test_sparse_tensor.py

94 lines
3.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
@File : test_sparse_tensor.py
@Author:
@Date : 2020-07-16
@Desc : test mindspore sparse_tensor's operation
"""
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore.ops import composite as C
from mindspore import Tensor, SparseTensor, context
context.set_context(mode=context.GRAPH_MODE, enable_sparse=True)
grad_op = C.GradOperation(get_all=True)
class MakeSparseTensor(nn.Cell):
def __init__(self, dense_shape):
super(MakeSparseTensor, self).__init__()
self.dense_shape = dense_shape
def construct(self, indices, values):
ret = (SparseTensor(indices, values, self.dense_shape),)
return ret[0]
def test_sparse_tensor_make_sparse_tensor():
indices = Tensor([[0, 1], [1, 2]])
values = Tensor([1, 2], dtype=ms.float32)
MakeSparseTensor((3, 4))(indices, values)
def test_sparse_tensor_attr():
class SparseTensorGetAttr(nn.Cell):
def __init__(self):
super(SparseTensorGetAttr, self).__init__()
self.dense_shape = (3, 4)
def construct(self, indices, values):
x = SparseTensor(indices, values, self.dense_shape)
return x.values, x.indices, x.dense_shape
indices = Tensor([[0, 1], [1, 2]])
values = Tensor([1, 2], dtype=ms.float32)
SparseTensorGetAttr()(indices, values)
grad_op(SparseTensorGetAttr())(indices, values)
def test_sparse_tensor_indices_dim_greater_than_dense_shape_dim():
indices = Tensor(np.array([[0, 0, 0], [0, 0, 1]], dtype=np.int32))
values = Tensor(np.array([100, 200], dtype=np.float32))
dense_shape = (2, 2)
with pytest.raises(TypeError):
MakeSparseTensor(dense_shape)(indices, values)
def test_sparse_tensor_indices_dim_less_than_dense_shape_dim():
indices = Tensor(np.array([[0, 0], [0, 1]], dtype=np.int32))
values = Tensor(np.array([100, 200], dtype=np.float32))
dense_shape = (2, 2, 2)
with pytest.raises(TypeError):
MakeSparseTensor(dense_shape)(indices, values)
def test_sparse_tensor_to_tensor():
class SparseToDenseCell(nn.Cell):
def __init__(self, dense_shape):
super(SparseToDenseCell, self).__init__()
self.dense_shape = dense_shape
self.sparse_to_dense = nn.SparseToDense()
def construct(self, indices, values):
sparse = SparseTensor(indices, values, self.dense_shape)
return self.sparse_to_dense(sparse)
indices = Tensor([[0, 1], [1, 2]])
values = Tensor([1, 2], dtype=ms.float32)
dense_shape = (3, 4)
SparseToDenseCell(dense_shape)(indices, values)
grad_op(SparseToDenseCell(dense_shape))(indices, values)