You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
3.3 KiB
94 lines
3.3 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
@File : test_sparse_tensor.py
|
|
@Author:
|
|
@Date : 2020-07-16
|
|
@Desc : test mindspore sparse_tensor's operation
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore.ops import composite as C
|
|
from mindspore import Tensor, SparseTensor, context
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, enable_sparse=True)
|
|
|
|
grad_op = C.GradOperation(get_all=True)
|
|
|
|
class MakeSparseTensor(nn.Cell):
|
|
def __init__(self, dense_shape):
|
|
super(MakeSparseTensor, self).__init__()
|
|
self.dense_shape = dense_shape
|
|
def construct(self, indices, values):
|
|
ret = (SparseTensor(indices, values, self.dense_shape),)
|
|
return ret[0]
|
|
|
|
|
|
def test_sparse_tensor_make_sparse_tensor():
|
|
indices = Tensor([[0, 1], [1, 2]])
|
|
values = Tensor([1, 2], dtype=ms.float32)
|
|
MakeSparseTensor((3, 4))(indices, values)
|
|
|
|
|
|
def test_sparse_tensor_attr():
|
|
class SparseTensorGetAttr(nn.Cell):
|
|
def __init__(self):
|
|
super(SparseTensorGetAttr, self).__init__()
|
|
self.dense_shape = (3, 4)
|
|
def construct(self, indices, values):
|
|
x = SparseTensor(indices, values, self.dense_shape)
|
|
return x.values, x.indices, x.dense_shape
|
|
|
|
indices = Tensor([[0, 1], [1, 2]])
|
|
values = Tensor([1, 2], dtype=ms.float32)
|
|
SparseTensorGetAttr()(indices, values)
|
|
grad_op(SparseTensorGetAttr())(indices, values)
|
|
|
|
|
|
def test_sparse_tensor_indices_dim_greater_than_dense_shape_dim():
|
|
indices = Tensor(np.array([[0, 0, 0], [0, 0, 1]], dtype=np.int32))
|
|
values = Tensor(np.array([100, 200], dtype=np.float32))
|
|
dense_shape = (2, 2)
|
|
with pytest.raises(TypeError):
|
|
MakeSparseTensor(dense_shape)(indices, values)
|
|
|
|
|
|
def test_sparse_tensor_indices_dim_less_than_dense_shape_dim():
|
|
indices = Tensor(np.array([[0, 0], [0, 1]], dtype=np.int32))
|
|
values = Tensor(np.array([100, 200], dtype=np.float32))
|
|
dense_shape = (2, 2, 2)
|
|
with pytest.raises(TypeError):
|
|
MakeSparseTensor(dense_shape)(indices, values)
|
|
|
|
|
|
def test_sparse_tensor_to_tensor():
|
|
class SparseToDenseCell(nn.Cell):
|
|
def __init__(self, dense_shape):
|
|
super(SparseToDenseCell, self).__init__()
|
|
self.dense_shape = dense_shape
|
|
self.sparse_to_dense = nn.SparseToDense()
|
|
def construct(self, indices, values):
|
|
sparse = SparseTensor(indices, values, self.dense_shape)
|
|
return self.sparse_to_dense(sparse)
|
|
|
|
indices = Tensor([[0, 1], [1, 2]])
|
|
values = Tensor([1, 2], dtype=ms.float32)
|
|
dense_shape = (3, 4)
|
|
SparseToDenseCell(dense_shape)(indices, values)
|
|
grad_op(SparseToDenseCell(dense_shape))(indices, values)
|