You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
3.5 KiB
91 lines
3.5 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test model train """
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Model
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.common.parameter import ParameterTuple, Parameter
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import functional as F
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
def get_reordered_parameters(parameters):
|
|
"""get_reordered_parameters"""
|
|
# put the bias parameter to the end
|
|
non_bias_param = []
|
|
bias_param = []
|
|
for item in parameters:
|
|
if item.name.find("bias") >= 0:
|
|
bias_param.append(item)
|
|
else:
|
|
non_bias_param.append(item)
|
|
reordered_params = tuple(non_bias_param + bias_param)
|
|
return len(non_bias_param), len(reordered_params), reordered_params
|
|
|
|
|
|
def get_net_trainable_reordered_params(net):
|
|
params = net.trainable_params()
|
|
return get_reordered_parameters(params)
|
|
|
|
|
|
class TrainOneStepWithLarsCell(nn.Cell):
|
|
"""TrainOneStepWithLarsCell definition"""
|
|
|
|
def __init__(self, network, optimizer, sens=1.0):
|
|
super(TrainOneStepWithLarsCell, self).__init__(auto_prefix=False)
|
|
self.network = network
|
|
self.slice_index, self.params_len, weights = get_net_trainable_reordered_params(self.network)
|
|
self.weights = ParameterTuple(weights)
|
|
self.optimizer = optimizer
|
|
self.grad = C.GradOperation(get_by_list=True,
|
|
sens_param=True)
|
|
self.sens = Parameter(Tensor([sens], mstype.float32), name='sens', requires_grad=False)
|
|
self.weight_decay = 1.0
|
|
self.lars = P.Lars(epsilon=1.0, hyperpara=1.0)
|
|
|
|
def construct(self, data, label):
|
|
weights = self.weights
|
|
loss = self.network(data, label)
|
|
grads = self.grad(self.network, weights)(data, label, self.sens)
|
|
non_bias_weights = weights[0: self.slice_index]
|
|
non_bias_grads = grads[0: self.slice_index]
|
|
bias_grads = grads[self.slice_index: self.params_len]
|
|
lars_grads = self.lars(non_bias_weights, non_bias_grads, self.weight_decay)
|
|
new_grads = lars_grads + bias_grads
|
|
return F.depend(loss, self.optimizer(new_grads))
|
|
|
|
|
|
# fn is a funcation use i as input
|
|
def lr_gen(fn, epoch_size):
|
|
for i in range(epoch_size):
|
|
yield fn(i)
|
|
|
|
|
|
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
|
"""me_train_tensor"""
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
# reorder the net parameters , leave the parameters that need to be passed into lars to the end part
|
|
|
|
opt = Momentum(get_net_trainable_reordered_params(net)[2], lr_gen(lambda i: 0.1, epoch_size), 0.9, 0.01, 1024)
|
|
Model(net, loss, opt)
|
|
_network = nn.WithLossCell(net, loss)
|
|
TrainOneStepWithLarsCell(_network, opt)
|
|
data = Tensor(input_np)
|
|
label = Tensor(label_np)
|
|
net(data, label)
|