You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_bias_add.py

94 lines
2.9 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.ops import operations as P
from mindspore.train.model import Model
class CrossEntropyLoss(nn.Cell):
def __init__(self, reduction='mean'):
super(CrossEntropyLoss, self).__init__()
self.reduce_mean = P.ReduceMean()
self.cross_entropy = nn.SoftmaxCrossEntropyWithLogits()
self.reduction = reduction
def construct(self, logits, label):
loss = self.cross_entropy(logits, label)
if self.reduction == 'mean':
loss = self.reduce_mean(loss, (-1,))
return loss
class DatasetLenet():
def __init__(self, predict, label, length=3):
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
def get_dataset_size(self):
return 32
def get_repeat_count(self):
return 1
def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
return self
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=1, stride=1, pad_mode='valid',
has_bias=True, weight_init='ones', bias_init='ones')
self.reduce_mean = P.ReduceMean(keep_dims=False).shard(((1, 1, 1, 8),))
self.flat = nn.Flatten()
def construct(self, inputs):
x = self.conv(inputs)
x = self.reduce_mean(x, -1)
x = self.flat(x)
return x
def test_bias_add():
context.set_context(mode=context.GRAPH_MODE)
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8)
input_np = np.ones([16, 3, 32, 32]).astype(np.float32)
label_np = np.zeros([16, 2048]).astype(np.float32)
dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1)
net = Net()
loss = CrossEntropyLoss()
opt = nn.Momentum(learning_rate=0.01, momentum=0.9, params=net.get_parameters())
model = Model(network=net, loss_fn=loss, optimizer=opt)
model.train(epoch=1, train_dataset=dataset, dataset_sink_mode=False)