You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_loss_scale.py

207 lines
7.2 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import Tensor
from mindspore import context
from mindspore.common.parameter import Parameter
from mindspore.common import dtype as mstype
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.nn.optim.momentum import Momentum
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
import mindspore.nn as nn
from mindspore.train import Model
from mindspore.context import ParallelMode
from tests.dataset_mock import MindData
GRADIENT_CLIP_TYPE = 1
GRADIENT_CLIP_VALUE = 1.0
clip_grad = C.MultitypeFuncGraph("clip_grad")
grad_scale = C.MultitypeFuncGraph("grad_scale")
reciprocal = P.Reciprocal()
@grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad):
return grad * reciprocal(scale)
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=65536, scale_factor=2, scale_window=1000)
@clip_grad.register("Number", "Number", "Tensor")
def _clip_grad(clip_type, clip_value, grad):
dt = F.dtype(grad)
if clip_type == 0:
new_grad = C.clip_by_value(grad, F.cast(F.tuple_to_array((-clip_value,)), dt),
F.cast(F.tuple_to_array((clip_value,)), dt))
else:
new_grad = nn.ClipByNorm()(grad, F.cast(F.tuple_to_array((clip_value,)), dt))
return new_grad
class TrainOneStepWithLossScaleCell(nn.Cell):
def __init__(self, network, optimizer, scale_update_cell=None):
super(TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False)
self.network = network
self.weights = optimizer.parameters
self.optimizer = optimizer
self.grad = C.GradOperation(get_by_list=True,
sens_param=True)
self.reducer_flag = False
self.grad_reducer = F.identity
self.cast = P.Cast()
self.alloc_status = P.NPUAllocFloatStatus()
self.get_status = P.NPUGetFloatStatus()
self.clear_status = P.NPUClearFloatStatus()
self.reduce_sum = P.ReduceSum(keep_dims=False)
self.base = Tensor(1, mstype.float32)
self.less_equal = P.LessEqual()
self.hyper_map = C.HyperMap()
self.loss_scale = None
self.loss_scaling_manager = scale_update_cell
if scale_update_cell:
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32),
name="loss_scale")
def construct(self, x, sens=None):
"""Defines the computation performed."""
weights = self.weights
loss = self.network(x)
if sens is None:
scaling_sens = self.loss_scale
else:
scaling_sens = sens
# alloc status and clear should be right before gradoperation
init = self.alloc_status()
init = F.depend(init, loss)
clear_status = self.clear_status(init)
scaling_sens = F.depend(scaling_sens, clear_status)
grads = self.grad(self.network, weights)(x, self.cast(scaling_sens, mstype.float32))
# apply grad reducer on grads
grads = self.grad_reducer(grads)
grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads)
init = F.depend(init, grads)
get_status = self.get_status(init)
init = F.depend(init, get_status)
flag_sum = self.reduce_sum(init, (0,))
cond = self.less_equal(self.base, flag_sum)
overflow = cond
if sens is None:
overflow = self.loss_scaling_manager(self.loss_scale, cond)
if overflow:
succ = False
else:
succ = self.optimizer(grads)
ret = (loss, cond, scaling_sens)
return F.depend(ret, succ)
class DatasetLenet(MindData):
def __init__(self, predict, label, length=3):
super(DatasetLenet, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class LoopLayer(nn.Cell):
def __init__(self):
super(LoopLayer, self).__init__()
self.matmul = P.MatMul()
self.relu = P.ReLU()
self.matmul_weight = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight")
def construct(self, x):
out = self.matmul(x, self.matmul_weight)
out = self.relu(out)
return out
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.exp = P.Exp()
self.mean = P.ReduceMean()
layers = []
for _ in range(3):
layer = LoopLayer()
layers.append(layer)
self.layers = nn.CellList(layers)
def construct(self, x):
out = self.exp(x)
for layer in self.layers:
layer_out = layer(out)
out = layer_out
out = self.mean(out, -1)
return out
class Net2(nn.Cell):
def __init__(self):
super(Net2, self).__init__()
self.matmul = P.MatMul()
self.relu = P.ReLU()
self.matmul_weight = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight")
def construct(self, x, b):
out = self.matmul(x, self.matmul_weight)
out = self.relu(out)
return out
def test_loss_scale():
context.set_context(mode=context.GRAPH_MODE)
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=8)
predict = Tensor(np.ones([64, 64]), dtype=ms.float32)
label = Tensor(np.ones([64,]), dtype=ms.int32)
dataset = DatasetLenet(predict, label)
net = Net()
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
net = TrainOneStepWithLossScaleCell(net, opt, update_cell)
model = Model(network=net)
model.train(2, dataset, dataset_sink_mode=False)
def test_loss_scale2():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=8)
predict = Tensor(np.ones([64, 64]), dtype=ms.float32)
label = Tensor(np.ones([64,]), dtype=ms.int32)
dataset = DatasetLenet(predict, label)
net = Net2()
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
net = nn.TrainOneStepWithLossScaleCell(net, opt, update_cell)
model = Model(network=net)
model.train(2, dataset, dataset_sink_mode=False)