You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/nlp/bert/run_pretrain.py

228 lines
13 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
#################pre_train bert example on zh-wiki########################
python run_pretrain.py
"""
import os
import argparse
import mindspore.communication.management as D
from mindspore.communication.management import get_rank
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecay
from mindspore import log as logger
from mindspore.common import set_seed
from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell, \
BertTrainAccumulateStepsWithLossScaleCell
from src.dataset import create_bert_dataset
from src.config import cfg, bert_net_cfg
from src.utils import LossCallBack, BertLearningRate
_current_dir = os.path.dirname(os.path.realpath(__file__))
def _set_bert_all_reduce_split():
"""set bert all_reduce fusion split, support num_hidden_layers is 12 and 24."""
if bert_net_cfg.num_hidden_layers == 12:
if bert_net_cfg.use_relative_positions:
context.set_auto_parallel_context(all_reduce_fusion_config=[29, 58, 87, 116, 145, 174, 203, 217])
else:
context.set_auto_parallel_context(all_reduce_fusion_config=[28, 55, 82, 109, 136, 163, 190, 205])
elif bert_net_cfg.num_hidden_layers == 24:
if bert_net_cfg.use_relative_positions:
context.set_auto_parallel_context(all_reduce_fusion_config=[30, 90, 150, 210, 270, 330, 390, 421])
else:
context.set_auto_parallel_context(all_reduce_fusion_config=[38, 93, 148, 203, 258, 313, 368, 397])
def _get_optimizer(args_opt, network):
"""get bert optimizer, support Lamb, Momentum, AdamWeightDecay."""
if cfg.optimizer == 'Lamb':
lr_schedule = BertLearningRate(learning_rate=cfg.Lamb.learning_rate,
end_learning_rate=cfg.Lamb.end_learning_rate,
warmup_steps=cfg.Lamb.warmup_steps,
decay_steps=args_opt.train_steps,
power=cfg.Lamb.power)
params = network.trainable_params()
decay_params = list(filter(cfg.Lamb.decay_filter, params))
other_params = list(filter(lambda x: not cfg.Lamb.decay_filter(x), params))
group_params = [{'params': decay_params, 'weight_decay': cfg.Lamb.weight_decay},
{'params': other_params},
{'order_params': params}]
optimizer = Lamb(group_params, learning_rate=lr_schedule, eps=cfg.Lamb.eps)
elif cfg.optimizer == 'Momentum':
optimizer = Momentum(network.trainable_params(), learning_rate=cfg.Momentum.learning_rate,
momentum=cfg.Momentum.momentum)
elif cfg.optimizer == 'AdamWeightDecay':
lr_schedule = BertLearningRate(learning_rate=cfg.AdamWeightDecay.learning_rate,
end_learning_rate=cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=cfg.AdamWeightDecay.warmup_steps,
decay_steps=args_opt.train_steps,
power=cfg.AdamWeightDecay.power)
params = network.trainable_params()
decay_params = list(filter(cfg.AdamWeightDecay.decay_filter, params))
other_params = list(filter(lambda x: not cfg.AdamWeightDecay.decay_filter(x), params))
group_params = [{'params': decay_params, 'weight_decay': cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0},
{'order_params': params}]
optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
else:
raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecay]".
format(cfg.optimizer))
return optimizer
def _auto_enable_graph_kernel(device_target, graph_kernel_mode):
"""Judge whether is suitable to enable graph kernel."""
return graph_kernel_mode in ("auto", "true") and device_target == 'GPU' and \
cfg.bert_network == 'base' and (cfg.batch_size == 32 or cfg.batch_size == 64) and \
cfg.optimizer == 'AdamWeightDecay'
def run_pretrain():
"""pre-train bert_clue"""
parser = argparse.ArgumentParser(description='bert pre_training')
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
help='device where the code will be implemented. (Default: Ascend)')
parser.add_argument("--distribute", type=str, default="false", choices=["true", "false"],
help="Run distribute, default is false.")
parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
parser.add_argument("--enable_save_ckpt", type=str, default="true", choices=["true", "false"],
help="Enable save checkpoint, default is true.")
parser.add_argument("--enable_lossscale", type=str, default="true", choices=["true", "false"],
help="Use lossscale or not, default is not.")
parser.add_argument("--do_shuffle", type=str, default="true", choices=["true", "false"],
help="Enable shuffle for dataset, default is true.")
parser.add_argument("--enable_data_sink", type=str, default="true", choices=["true", "false"],
help="Enable data sink, default is true.")
parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.")
parser.add_argument("--accumulation_steps", type=int, default="1",
help="Accumulating gradients N times before weight update, default is 1.")
parser.add_argument("--save_checkpoint_path", type=str, default="", help="Save checkpoint path")
parser.add_argument("--load_checkpoint_path", type=str, default="", help="Load checkpoint file path")
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
"default is 1000.")
parser.add_argument("--train_steps", type=int, default=-1, help="Training Steps, default is -1, "
"meaning run all steps according to epoch number.")
parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path")
parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
parser.add_argument("--enable_graph_kernel", type=str, default="auto", choices=["auto", "true", "false"],
help="Accelerate by graph kernel, default is auto.")
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
context.set_context(reserve_class_name_in_scope=False)
ckpt_save_dir = args_opt.save_checkpoint_path
if args_opt.distribute == "true":
if args_opt.device_target == 'Ascend':
D.init()
device_num = args_opt.device_num
rank = args_opt.device_id % device_num
else:
D.init()
device_num = D.get_group_size()
rank = D.get_rank()
ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(get_rank()) + '/'
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
device_num=device_num)
if args_opt.device_target == 'Ascend':
_set_bert_all_reduce_split()
else:
rank = 0
device_num = 1
is_auto_enable_graph_kernel = _auto_enable_graph_kernel(args_opt.device_target, args_opt.enable_graph_kernel)
if args_opt.enable_graph_kernel == "true" or is_auto_enable_graph_kernel:
context.set_context(enable_graph_kernel=True)
if args_opt.device_target == 'GPU' and bert_net_cfg.compute_type != mstype.float32 and \
not is_auto_enable_graph_kernel:
logger.warning('Gpu only support fp32 temporarily, run with fp32.')
bert_net_cfg.compute_type = mstype.float32
if args_opt.accumulation_steps > 1:
logger.info("accumulation steps: {}".format(args_opt.accumulation_steps))
logger.info("global batch size: {}".format(cfg.batch_size * args_opt.accumulation_steps))
if args_opt.enable_data_sink == "true":
args_opt.data_sink_steps *= args_opt.accumulation_steps
logger.info("data sink steps: {}".format(args_opt.data_sink_steps))
if args_opt.enable_save_ckpt == "true":
args_opt.save_checkpoint_steps *= args_opt.accumulation_steps
logger.info("save checkpoint steps: {}".format(args_opt.save_checkpoint_steps))
ds = create_bert_dataset(device_num, rank, args_opt.do_shuffle, args_opt.data_dir, args_opt.schema_dir)
net_with_loss = BertNetworkWithLoss(bert_net_cfg, True)
new_repeat_count = args_opt.epoch_size * ds.get_dataset_size() // args_opt.data_sink_steps
if args_opt.train_steps > 0:
train_steps = args_opt.train_steps * args_opt.accumulation_steps
new_repeat_count = min(new_repeat_count, train_steps // args_opt.data_sink_steps)
else:
args_opt.train_steps = args_opt.epoch_size * ds.get_dataset_size() // args_opt.accumulation_steps
logger.info("train steps: {}".format(args_opt.train_steps))
optimizer = _get_optimizer(args_opt, net_with_loss)
callback = [TimeMonitor(args_opt.data_sink_steps), LossCallBack(ds.get_dataset_size())]
if args_opt.enable_save_ckpt == "true" and args_opt.device_id % min(8, device_num) == 0:
config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
keep_checkpoint_max=args_opt.save_checkpoint_num)
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_bert',
directory=None if ckpt_save_dir == "" else ckpt_save_dir, config=config_ck)
callback.append(ckpoint_cb)
if args_opt.load_checkpoint_path:
param_dict = load_checkpoint(args_opt.load_checkpoint_path)
load_param_into_net(net_with_loss, param_dict)
if args_opt.enable_lossscale == "true":
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value,
scale_factor=cfg.scale_factor,
scale_window=cfg.scale_window)
if args_opt.accumulation_steps <= 1:
net_with_grads = BertTrainOneStepWithLossScaleCell(net_with_loss, optimizer=optimizer,
scale_update_cell=update_cell)
else:
accumulation_steps = args_opt.accumulation_steps
net_with_grads = BertTrainAccumulateStepsWithLossScaleCell(net_with_loss, optimizer=optimizer,
scale_update_cell=update_cell,
accumulation_steps=accumulation_steps,
enable_global_norm=cfg.enable_global_norm)
else:
net_with_grads = BertTrainOneStepCell(net_with_loss, optimizer=optimizer)
model = Model(net_with_grads)
model.train(new_repeat_count, ds, callbacks=callback,
dataset_sink_mode=(args_opt.enable_data_sink == "true"), sink_size=args_opt.data_sink_steps)
if __name__ == '__main__':
set_seed(0)
run_pretrain()