You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_concatv2_op.py

179 lines
5.4 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(device_target='GPU')
class ConcatV32(nn.Cell):
def __init__(self):
super(ConcatV32, self).__init__()
self.cat = P.Concat(axis=2)
self.x1 = Parameter(initializer(
Tensor(np.arange(2 * 2 * 1).reshape(2, 2, 1).astype(np.float32)), [2, 2, 1]), name='x1')
self.x2 = Parameter(initializer(
Tensor(np.arange(2 * 2 * 2).reshape(2, 2, 2).astype(np.float32)), [2, 2, 2]), name='x2')
@ms_function
def construct(self):
return self.cat((self.x1, self.x2))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_axis32():
cat = ConcatV32()
output = cat()
expect = [[[0., 0., 1.],
[1., 2., 3.]],
[[2., 4., 5.],
[3., 6., 7.]]]
print(output)
assert (output.asnumpy() == expect).all()
class ConcatV43(nn.Cell):
def __init__(self):
super(ConcatV43, self).__init__()
self.cat = P.Concat(axis=3)
self.x1 = Parameter(initializer(
Tensor(np.arange(2 * 2 * 2 * 2).reshape(2, 2, 2, 2).astype(np.float32)), [2, 2, 2, 2]), name='x1')
self.x2 = Parameter(initializer(
Tensor(np.arange(2 * 2 * 2 * 3).reshape(2, 2, 2, 3).astype(np.float32)), [2, 2, 2, 3]), name='x2')
@ms_function
def construct(self):
return self.cat((self.x1, self.x2))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_axis43():
cat = ConcatV43()
output = cat()
expect = [[[[0., 1., 0., 1., 2.],
[2., 3., 3., 4., 5.]],
[[4., 5., 6., 7., 8.],
[6., 7., 9., 10., 11.]]],
[[[8., 9., 12., 13., 14.],
[10., 11., 15., 16., 17.]],
[[12., 13., 18., 19., 20.],
[14., 15., 21., 22., 23.]]]]
assert (output.asnumpy() == expect).all()
print(output)
class ConcatV21(nn.Cell):
def __init__(self):
super(ConcatV21, self).__init__()
self.cat = P.Concat(axis=1)
self.x1 = Parameter(initializer(
Tensor(np.arange(2 * 2).reshape(2, 2).astype(np.float32)), [2, 2]), name='x1')
self.x2 = Parameter(initializer(
Tensor(np.arange(2 * 3).reshape(2, 3).astype(np.float32)), [2, 3]), name='x2')
@ms_function
def construct(self):
return self.cat((self.x1, self.x2))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_axis21():
cat = ConcatV21()
output = cat()
expect = [[0., 1., 0., 1., 2.],
[2., 3., 3., 4., 5.]]
assert (output.asnumpy() == expect).all()
print(output)
class Concat3INet(nn.Cell):
def __init__(self):
super(Concat3INet, self).__init__()
self.cat = P.Concat(axis=1)
def construct(self, x1, x2, x3):
return self.cat((x1, x2, x3))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_concat_3i():
cat = Concat3INet()
x1_np = np.random.randn(32, 4, 224, 224).astype(np.float32)
x2_np = np.random.randn(32, 8, 224, 224).astype(np.float32)
x3_np = np.random.randn(32, 10, 224, 224).astype(np.float32)
output_np = np.concatenate((x1_np, x2_np, x3_np), axis=1)
x1_ms = Tensor(x1_np)
x2_ms = Tensor(x2_np)
x3_ms = Tensor(x3_np)
output_ms = cat(x1_ms, x2_ms, x3_ms)
error = np.ones(shape=output_np.shape) * 10e-6
diff = output_ms.asnumpy() - output_np
assert np.all(diff < error)
class Concat4INet(nn.Cell):
def __init__(self):
super(Concat4INet, self).__init__()
self.cat = P.Concat(axis=1)
def construct(self, x1, x2, x3, x4):
return self.cat((x1, x2, x3, x4))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_concat_4i():
cat = Concat4INet()
x1_np = np.random.randn(32, 4, 224, 224).astype(np.float32)
x2_np = np.random.randn(32, 8, 224, 224).astype(np.float32)
x3_np = np.random.randn(32, 10, 224, 224).astype(np.float32)
x4_np = np.random.randn(32, 5, 224, 224).astype(np.float32)
output_np = np.concatenate((x1_np, x2_np, x3_np, x4_np), axis=1)
x1_ms = Tensor(x1_np)
x2_ms = Tensor(x2_np)
x3_ms = Tensor(x3_np)
x4_ms = Tensor(x4_np)
output_ms = cat(x1_ms, x2_ms, x3_ms, x4_ms)
error = np.ones(shape=output_np.shape) * 10e-6
diff = output_ms.asnumpy() - output_np
assert np.all(diff < error)