You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
6.4 KiB
129 lines
6.4 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
Data operations, will be used in run_pretrain.py
|
|
"""
|
|
import os
|
|
|
|
import mindspore.common.dtype as mstype
|
|
import mindspore.dataset.engine.datasets as de
|
|
import mindspore.dataset.transforms.c_transforms as C
|
|
from mindspore import log as logger
|
|
from .bert_net_config import bert_net_cfg
|
|
|
|
|
|
def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None, schema_dir=None):
|
|
"""create train dataset"""
|
|
# apply repeat operations
|
|
files = os.listdir(data_dir)
|
|
data_files = []
|
|
for file_name in files:
|
|
if "tfrecord" in file_name:
|
|
data_files.append(os.path.join(data_dir, file_name))
|
|
data_files = sorted(data_files)
|
|
ds = de.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
|
|
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
|
|
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
|
|
shuffle=de.Shuffle.FILES if do_shuffle == "true" else False,
|
|
num_shards=device_num, shard_id=rank, shard_equal_rows=True)
|
|
ori_dataset_size = ds.get_dataset_size()
|
|
print('origin dataset size: ', ori_dataset_size)
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
|
|
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
|
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
|
# apply batch operations
|
|
ds = ds.batch(bert_net_cfg.batch_size, drop_remainder=True)
|
|
logger.info("data size: {}".format(ds.get_dataset_size()))
|
|
logger.info("repeat count: {}".format(ds.get_repeat_count()))
|
|
return ds
|
|
|
|
|
|
def create_ner_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy",
|
|
data_file_path=None, schema_file_path=None):
|
|
"""create finetune or evaluation dataset"""
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
|
|
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"])
|
|
if assessment_method == "Spearman_correlation":
|
|
type_cast_op_float = C.TypeCast(mstype.float32)
|
|
ds = ds.map(input_columns="label_ids", operations=type_cast_op_float)
|
|
else:
|
|
ds = ds.map(input_columns="label_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
|
ds = ds.repeat(repeat_count)
|
|
# apply shuffle operation
|
|
buffer_size = 960
|
|
ds = ds.shuffle(buffer_size=buffer_size)
|
|
# apply batch operations
|
|
ds = ds.batch(batch_size, drop_remainder=True)
|
|
return ds
|
|
|
|
|
|
def create_classification_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy",
|
|
data_file_path=None, schema_file_path=None):
|
|
"""create finetune or evaluation dataset"""
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
|
|
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"])
|
|
if assessment_method == "Spearman_correlation":
|
|
type_cast_op_float = C.TypeCast(mstype.float32)
|
|
ds = ds.map(input_columns="label_ids", operations=type_cast_op_float)
|
|
else:
|
|
ds = ds.map(input_columns="label_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
|
ds = ds.repeat(repeat_count)
|
|
# apply shuffle operation
|
|
buffer_size = 960
|
|
ds = ds.shuffle(buffer_size=buffer_size)
|
|
# apply batch operations
|
|
ds = ds.batch(batch_size, drop_remainder=True)
|
|
return ds
|
|
|
|
|
|
def create_squad_dataset(batch_size=1, repeat_count=1, data_file_path=None, schema_file_path=None, is_training=True):
|
|
"""create finetune or evaluation dataset"""
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
if is_training:
|
|
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
|
|
columns_list=["input_ids", "input_mask", "segment_ids",
|
|
"start_positions", "end_positions",
|
|
"unique_ids", "is_impossible"])
|
|
ds = ds.map(input_columns="start_positions", operations=type_cast_op)
|
|
ds = ds.map(input_columns="end_positions", operations=type_cast_op)
|
|
else:
|
|
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
|
|
columns_list=["input_ids", "input_mask", "segment_ids", "unique_ids"])
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
|
ds = ds.repeat(repeat_count)
|
|
# apply shuffle operation
|
|
buffer_size = 960
|
|
ds = ds.shuffle(buffer_size=buffer_size)
|
|
# apply batch operations
|
|
ds = ds.batch(batch_size, drop_remainder=True)
|
|
return ds
|