You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/c_api_dataset_save.cc

151 lines
5.3 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/transforms.h"
using namespace mindspore::dataset;
using mindspore::dataset::Tensor;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestPipeline, TestSaveCifar10AndLoad) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSaveCifar10AndLoad(single mindrecord file).";
// Stage 1: load original dataset
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", SequentialSampler(0, 10));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
std::vector<std::shared_ptr<Tensor>> original_data;
iter->GetNextRow(&row);
// Save original data for comparison
uint64_t i = 0;
while (row.size() != 0) {
auto label = row["label"];
original_data.push_back(label);
MS_LOG(INFO) << "Tensor label: " << *label;
iter->GetNextRow(&row);
i++;
}
// Expect 10 samples
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
// Stage 2: Save data processed by the dataset pipeline
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::string temp_file = datasets_root_path_ + "/testCifar10Data/mind.mind";
std::string temp_file_db = datasets_root_path_ + "/testCifar10Data/mind.mind.db";
bool rc = ds->Save(temp_file);
// if save fails, no need to continue the execution
// save could fail if temp_file already exists
ASSERT_EQ(rc, true);
// Stage 3: Load dataset from file output by stage 2
// Create a MindData Dataset
std::shared_ptr<Dataset> ds_minddata = MindData(temp_file, {}, SequentialSampler(0, 10));
// Create objects for the tensor ops
// uint32 will be casted to int64 implicitly in mindrecord file, so we have to cast it back to uint32
std::shared_ptr<TensorOperation> type_cast = transforms::TypeCast("uint32");
EXPECT_NE(type_cast, nullptr);
// Create a Map operation on ds
ds_minddata = ds_minddata->Map({type_cast}, {"label"});
EXPECT_NE(ds_minddata, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter_minddata = ds_minddata->CreateIterator();
EXPECT_NE(iter_minddata, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row_minddata;
iter_minddata->GetNextRow(&row_minddata);
// Check column name for each row
EXPECT_NE(row_minddata.find("image"), row_minddata.end());
EXPECT_NE(row_minddata.find("label"), row_minddata.end());
// Expect the output data is same with original_data
uint64_t j = 0;
while (row_minddata.size() != 0) {
auto label = row_minddata["label"];
EXPECT_EQ(*original_data[j], *label);
MS_LOG(INFO) << "Tensor label: " << *label;
iter_minddata->GetNextRow(&row_minddata);
j++;
}
// Expect 10 samples
EXPECT_EQ(j, 10);
// Manually terminate the pipeline
iter_minddata->Stop();
// Delete temp file
EXPECT_EQ(remove(temp_file.c_str()), 0);
EXPECT_EQ(remove(temp_file_db.c_str()), 0);
}
TEST_F(MindDataTestPipeline, TestSaveFail) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSaveFail with incorrect param.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", SequentialSampler(0, 10));
EXPECT_NE(ds, nullptr);
// fail with invalid dataset_path
std::string temp_file1 = "";
bool rc1 = ds->Save(temp_file1);
EXPECT_EQ(rc1, false);
// fail with invalid dataset_path
std::string temp_file2 = datasets_root_path_ + "/testCifar10Data/";
bool rc2 = ds->Save(temp_file2);
EXPECT_EQ(rc2, false);
// fail with invalid num_files
std::string temp_file3 = datasets_root_path_ + "/testCifar10Data/mind.mind";
bool rc3 = ds->Save(temp_file3, 0);
EXPECT_EQ(rc3, false);
// fail with invalid num_files
std::string temp_file4 = datasets_root_path_ + "/testCifar10Data/mind.mind";
bool rc4 = ds->Save(temp_file4, 1001);
EXPECT_EQ(rc4, false);
// fail with invalid dataset_type
std::string temp_file5 = datasets_root_path_ + "/testCifar10Data/mind.mind";
bool rc5 = ds->Save(temp_file5, 5, "tfrecord");
EXPECT_EQ(rc5, false);
}