You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
2.9 KiB
96 lines
2.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
test ssim
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.nn as nn
|
|
from mindspore.common.api import _executor
|
|
from mindspore import Tensor
|
|
|
|
|
|
class SSIMNet(nn.Cell):
|
|
def __init__(self, max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03):
|
|
super(SSIMNet, self).__init__()
|
|
self.net = nn.SSIM(max_val, filter_size, filter_sigma, k1, k2)
|
|
|
|
def construct(self, img1, img2):
|
|
return self.net(img1, img2)
|
|
|
|
|
|
def test_compile():
|
|
net = SSIMNet()
|
|
img1 = Tensor(np.random.random((8, 3, 16, 16)))
|
|
img2 = Tensor(np.random.random((8, 3, 16, 16)))
|
|
_executor.compile(net, img1, img2)
|
|
|
|
def test_compile_grayscale():
|
|
max_val = 255
|
|
net = SSIMNet(max_val = max_val)
|
|
img1 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
|
img2 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
|
|
_executor.compile(net, img1, img2)
|
|
|
|
def test_ssim_max_val_negative():
|
|
max_val = -1
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(max_val)
|
|
|
|
def test_ssim_max_val_bool():
|
|
max_val = True
|
|
with pytest.raises(TypeError):
|
|
net = SSIMNet(max_val)
|
|
|
|
def test_ssim_max_val_zero():
|
|
max_val = 0
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(max_val)
|
|
|
|
def test_ssim_filter_size_float():
|
|
with pytest.raises(TypeError):
|
|
net = SSIMNet(filter_size=1.1)
|
|
|
|
def test_ssim_filter_size_zero():
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(filter_size=0)
|
|
|
|
def test_ssim_filter_sigma_zero():
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(filter_sigma=0.0)
|
|
|
|
def test_ssim_filter_sigma_negative():
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(filter_sigma=-0.1)
|
|
|
|
def test_ssim_k1_k2_wrong_value():
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(k1=1.1)
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(k1=1.0)
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(k1=0.0)
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(k1=-1.0)
|
|
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(k2=1.1)
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(k2=1.0)
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(k2=0.0)
|
|
with pytest.raises(ValueError):
|
|
net = SSIMNet(k2=-1.0)
|