You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/ops/test_ops_reid.py

173 lines
6.0 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test Activations """
import functools
import numpy as np
import mindspore.nn as nn
from mindspore.ops import operations as P
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
from ....ops_common import convert
class SeqConvBnRelu(nn.Cell):
""" SeqConvBnRelu definition """
def __init__(self, in_ch, out_ch):
super(SeqConvBnRelu, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 3)
self.bn = nn.BatchNorm2d(out_ch)
self.relu = P.ReLU()
def construct(self, input_x):
return self.relu(self.bn(self.conv(input_x)))
test_case_reid_ops = [
('ReduceMax', {
'block': P.ReduceMax(keep_dims=False),
'desc_const': [(1,)],
'desc_inputs': [convert([32, 32], np.float16)],
'desc_bprop': [convert([32], np.float16)],
'skip': []}),
('ReduceMin', {
'block': P.ReduceMin(),
'desc_const': [(1,)],
'desc_inputs': [[32, 32]],
'desc_bprop': [[32]],
'skip': []}),
('ReduceMean', {
'block': P.ReduceMean(keep_dims=True),
'desc_const': [(1, 2)],
'desc_inputs': [[32, 4, 4]],
'desc_bprop': [[32, 1, 1]]}),
('Log', {
'block': P.Log(),
'desc_inputs': [[4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]],
'skip': ['backward']}), # check backward error
('Reciprocal', {
'block': P.Reciprocal(),
'desc_inputs': [[4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]],
'skip': ['backward']}),
('FloorDiv', {
'block': P.FloorDiv(),
'desc_inputs': [[4, 128, 1024], [4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]]}),
('Sigmoid', {
'block': P.Sigmoid(),
'desc_inputs': [[4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]]}),
('Softmax', {
'block': P.Softmax(),
'desc_inputs': [[1, 16]],
'desc_bprop': [[1, 16]],
'skip': ['backward']}), # check backward error
('Softmax', {
'block': P.Softmax(axis=(0, 1)),
'desc_inputs': [[1, 16]],
'desc_bprop': [[1, 16]],
'skip': ['backward']}),
('L2Normalize', {
'block': P.L2Normalize(),
'desc_inputs': [[4, 128, 1024]],
'desc_bprop': [[4, 128, 1024]]}),
('ReLU', {
'block': P.ReLU(),
'desc_inputs': [[64, 64, 112, 112]],
'desc_bprop': [[64, 64, 112, 112]]}),
('SeqConvBnRelu', {
'block': SeqConvBnRelu(3, 64),
'desc_inputs': [[64, 3, 112, 112]],
'desc_bprop': [[64, 64, 112, 112]]}),
('PReluCell', {
'block': nn.PReLU(1, [np.float32(0.25)]),
'desc_inputs': [[128, 64, 112, 112]],
'desc_bprop': [[128, 64, 112, 112]]}),
('PRelu', {
'block': P.PReLU(),
'desc_inputs': [[128, 64, 112, 112], [64,]],
'desc_bprop': [[128, 64, 112, 112]]}),
('Cos', {
'block': P.Cos(),
'desc_inputs': [[8, 16]],
'desc_bprop': [[8, 16]]}),
('ACos', {
'block': P.ACos(),
'desc_inputs': [[8, 16]],
'desc_bprop': [[8, 16]]}),
('Exp', {
'block': P.Exp(),
'desc_inputs': [[256, 8]],
'desc_bprop': [[256, 8]]}),
('Pow', {
'block': P.Pow(), # 输入有标量插件产生了段错误。
'desc_const': [2.0],
'desc_inputs': [[1, 512]],
'desc_bprop': [[1, 512]]}),
('LogicalNot', {
'block': P.LogicalNot(),
'desc_inputs': [convert([256], np.bool_)],
'desc_bprop': [[256]]}), # 自定义算子 input bool没转换gongchen提单。
('Equal', {
'block': P.Equal(),
'desc_inputs': [convert([256], np.float16), convert([256], np.float16)],
'desc_bprop': [[256]]}),
('Greater', {
'block': P.Greater(),
'desc_inputs': [convert([256], np.float16), convert([256], np.float16)],
'desc_bprop': [[256]]}),
('Dropout', {
'block': nn.Dropout(),
'desc_inputs': [[1, 512, 7, 7]],
'desc_bprop': [[1, 512, 7, 7]]}), # 输入有标量插件产生了段错误。
('MatMul', {
'block': P.MatMul(),
'desc_inputs': [[64, 512], [512, 64]], # fp16不行。很有问题。
'desc_bprop': [[64, 64]]}),
('Maximum', {
'block': P.Maximum(),
'desc_inputs': [[64, 1], [64, 1]],
'desc_bprop': [[64, 1]]}),
]
test_case_lists = [test_case_reid_ops]
test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# use -k to select certain testcast
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
test_exec_case = filter(lambda x: 'skip' not in x[1] or
'exec' not in x[1]['skip'], test_case)
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
'backward' not in x[1]['skip'] and 'backward_exec'
not in x[1]['skip'], test_case)
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
return test_exec_case
@mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
def test_backward_exec():
return test_backward_exec_case