You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							206 lines
						
					
					
						
							6.2 KiB
						
					
					
				
			
		
		
	
	
							206 lines
						
					
					
						
							6.2 KiB
						
					
					
				| # Copyright 2020 Huawei Technologies Co., Ltd
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| # http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| # ============================================================================
 | |
| """
 | |
| Test nn.probability.distribution.Exponential.
 | |
| """
 | |
| import pytest
 | |
| 
 | |
| import mindspore.nn as nn
 | |
| import mindspore.nn.probability.distribution as msd
 | |
| from mindspore import dtype
 | |
| from mindspore import Tensor
 | |
| 
 | |
| 
 | |
| def test_arguments():
 | |
|     """
 | |
|     Args passing during initialization.
 | |
|     """
 | |
|     e = msd.Exponential()
 | |
|     assert isinstance(e, msd.Distribution)
 | |
|     e = msd.Exponential([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
 | |
|     assert isinstance(e, msd.Distribution)
 | |
| 
 | |
| def test_type():
 | |
|     with pytest.raises(TypeError):
 | |
|         msd.Exponential([0.1], dtype=dtype.int32)
 | |
| 
 | |
| def test_name():
 | |
|     with pytest.raises(TypeError):
 | |
|         msd.Exponential([0.1], name=1.0)
 | |
| 
 | |
| def test_seed():
 | |
|     with pytest.raises(TypeError):
 | |
|         msd.Exponential([0.1], seed='seed')
 | |
| 
 | |
| def test_rate():
 | |
|     """
 | |
|     Invalid rate.
 | |
|     """
 | |
|     with pytest.raises(ValueError):
 | |
|         msd.Exponential([-0.1], dtype=dtype.float32)
 | |
|     with pytest.raises(ValueError):
 | |
|         msd.Exponential([0.0], dtype=dtype.float32)
 | |
| 
 | |
| class ExponentialProb(nn.Cell):
 | |
|     """
 | |
|     Exponential distribution: initialize with rate.
 | |
|     """
 | |
|     def __init__(self):
 | |
|         super(ExponentialProb, self).__init__()
 | |
|         self.e = msd.Exponential(0.5, dtype=dtype.float32)
 | |
| 
 | |
|     def construct(self, value):
 | |
|         prob = self.e.prob(value)
 | |
|         log_prob = self.e.log_prob(value)
 | |
|         cdf = self.e.cdf(value)
 | |
|         log_cdf = self.e.log_cdf(value)
 | |
|         sf = self.e.survival_function(value)
 | |
|         log_sf = self.e.log_survival(value)
 | |
|         return prob + log_prob + cdf + log_cdf + sf + log_sf
 | |
| 
 | |
| def test_exponential_prob():
 | |
|     """
 | |
|     Test probability functions: passing value through construct.
 | |
|     """
 | |
|     net = ExponentialProb()
 | |
|     value = Tensor([0.2, 0.3, 5.0, 2, 3.9], dtype=dtype.float32)
 | |
|     ans = net(value)
 | |
|     assert isinstance(ans, Tensor)
 | |
| 
 | |
| class ExponentialProb1(nn.Cell):
 | |
|     """
 | |
|     Exponential distribution: initialize without rate.
 | |
|     """
 | |
|     def __init__(self):
 | |
|         super(ExponentialProb1, self).__init__()
 | |
|         self.e = msd.Exponential(dtype=dtype.float32)
 | |
| 
 | |
|     def construct(self, value, rate):
 | |
|         prob = self.e.prob(value, rate)
 | |
|         log_prob = self.e.log_prob(value, rate)
 | |
|         cdf = self.e.cdf(value, rate)
 | |
|         log_cdf = self.e.log_cdf(value, rate)
 | |
|         sf = self.e.survival_function(value, rate)
 | |
|         log_sf = self.e.log_survival(value, rate)
 | |
|         return prob + log_prob + cdf + log_cdf + sf + log_sf
 | |
| 
 | |
| def test_exponential_prob1():
 | |
|     """
 | |
|     Test probability functions: passing value/rate through construct.
 | |
|     """
 | |
|     net = ExponentialProb1()
 | |
|     value = Tensor([0.2, 0.9, 1, 2, 3], dtype=dtype.float32)
 | |
|     rate = Tensor([0.5], dtype=dtype.float32)
 | |
|     ans = net(value, rate)
 | |
|     assert isinstance(ans, Tensor)
 | |
| 
 | |
| class ExponentialKl(nn.Cell):
 | |
|     """
 | |
|     Test class: kl_loss between Exponential distributions.
 | |
|     """
 | |
|     def __init__(self):
 | |
|         super(ExponentialKl, self).__init__()
 | |
|         self.e1 = msd.Exponential(0.7, dtype=dtype.float32)
 | |
|         self.e2 = msd.Exponential(dtype=dtype.float32)
 | |
| 
 | |
|     def construct(self, rate_b, rate_a):
 | |
|         kl1 = self.e1.kl_loss('Exponential', rate_b)
 | |
|         kl2 = self.e2.kl_loss('Exponential', rate_b, rate_a)
 | |
|         return kl1 + kl2
 | |
| 
 | |
| def test_kl():
 | |
|     """
 | |
|     Test kl_loss function.
 | |
|     """
 | |
|     net = ExponentialKl()
 | |
|     rate_b = Tensor([0.3], dtype=dtype.float32)
 | |
|     rate_a = Tensor([0.7], dtype=dtype.float32)
 | |
|     ans = net(rate_b, rate_a)
 | |
|     assert isinstance(ans, Tensor)
 | |
| 
 | |
| class ExponentialCrossEntropy(nn.Cell):
 | |
|     """
 | |
|     Test class: cross_entropy of Exponential distribution.
 | |
|     """
 | |
|     def __init__(self):
 | |
|         super(ExponentialCrossEntropy, self).__init__()
 | |
|         self.e1 = msd.Exponential(0.3, dtype=dtype.float32)
 | |
|         self.e2 = msd.Exponential(dtype=dtype.float32)
 | |
| 
 | |
|     def construct(self, rate_b, rate_a):
 | |
|         h1 = self.e1.cross_entropy('Exponential', rate_b)
 | |
|         h2 = self.e2.cross_entropy('Exponential', rate_b, rate_a)
 | |
|         return h1 + h2
 | |
| 
 | |
| def test_cross_entropy():
 | |
|     """
 | |
|     Test cross_entropy between Exponential distributions.
 | |
|     """
 | |
|     net = ExponentialCrossEntropy()
 | |
|     rate_b = Tensor([0.3], dtype=dtype.float32)
 | |
|     rate_a = Tensor([0.7], dtype=dtype.float32)
 | |
|     ans = net(rate_b, rate_a)
 | |
|     assert isinstance(ans, Tensor)
 | |
| 
 | |
| class ExponentialBasics(nn.Cell):
 | |
|     """
 | |
|     Test class: basic mean/sd/mode/entropy function.
 | |
|     """
 | |
|     def __init__(self):
 | |
|         super(ExponentialBasics, self).__init__()
 | |
|         self.e = msd.Exponential([0.3, 0.5], dtype=dtype.float32)
 | |
| 
 | |
|     def construct(self):
 | |
|         mean = self.e.mean()
 | |
|         sd = self.e.sd()
 | |
|         var = self.e.var()
 | |
|         mode = self.e.mode()
 | |
|         entropy = self.e.entropy()
 | |
|         return mean + sd + var + mode + entropy
 | |
| 
 | |
| def test_bascis():
 | |
|     """
 | |
|     Test mean/sd/var/mode/entropy functionality of Exponential distribution.
 | |
|     """
 | |
|     net = ExponentialBasics()
 | |
|     ans = net()
 | |
|     assert isinstance(ans, Tensor)
 | |
| 
 | |
| 
 | |
| class ExpConstruct(nn.Cell):
 | |
|     """
 | |
|     Exponential distribution: going through construct.
 | |
|     """
 | |
|     def __init__(self):
 | |
|         super(ExpConstruct, self).__init__()
 | |
|         self.e = msd.Exponential(0.5, dtype=dtype.float32)
 | |
|         self.e1 = msd.Exponential(dtype=dtype.float32)
 | |
| 
 | |
|     def construct(self, value, rate):
 | |
|         prob = self.e('prob', value)
 | |
|         prob1 = self.e('prob', value, rate)
 | |
|         prob2 = self.e1('prob', value, rate)
 | |
|         return prob + prob1 + prob2
 | |
| 
 | |
| def test_exp_construct():
 | |
|     """
 | |
|     Test probability function going through construct.
 | |
|     """
 | |
|     net = ExpConstruct()
 | |
|     value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
 | |
|     probs = Tensor([0.5], dtype=dtype.float32)
 | |
|     ans = net(value, probs)
 | |
|     assert isinstance(ans, Tensor)
 |