You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/distribution/test_exponential.py

206 lines
6.2 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.Exponential.
"""
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_arguments():
"""
Args passing during initialization.
"""
e = msd.Exponential()
assert isinstance(e, msd.Distribution)
e = msd.Exponential([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
assert isinstance(e, msd.Distribution)
def test_type():
with pytest.raises(TypeError):
msd.Exponential([0.1], dtype=dtype.int32)
def test_name():
with pytest.raises(TypeError):
msd.Exponential([0.1], name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Exponential([0.1], seed='seed')
def test_rate():
"""
Invalid rate.
"""
with pytest.raises(ValueError):
msd.Exponential([-0.1], dtype=dtype.float32)
with pytest.raises(ValueError):
msd.Exponential([0.0], dtype=dtype.float32)
class ExponentialProb(nn.Cell):
"""
Exponential distribution: initialize with rate.
"""
def __init__(self):
super(ExponentialProb, self).__init__()
self.e = msd.Exponential(0.5, dtype=dtype.float32)
def construct(self, value):
prob = self.e.prob(value)
log_prob = self.e.log_prob(value)
cdf = self.e.cdf(value)
log_cdf = self.e.log_cdf(value)
sf = self.e.survival_function(value)
log_sf = self.e.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_exponential_prob():
"""
Test probability functions: passing value through construct.
"""
net = ExponentialProb()
value = Tensor([0.2, 0.3, 5.0, 2, 3.9], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class ExponentialProb1(nn.Cell):
"""
Exponential distribution: initialize without rate.
"""
def __init__(self):
super(ExponentialProb1, self).__init__()
self.e = msd.Exponential(dtype=dtype.float32)
def construct(self, value, rate):
prob = self.e.prob(value, rate)
log_prob = self.e.log_prob(value, rate)
cdf = self.e.cdf(value, rate)
log_cdf = self.e.log_cdf(value, rate)
sf = self.e.survival_function(value, rate)
log_sf = self.e.log_survival(value, rate)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_exponential_prob1():
"""
Test probability functions: passing value/rate through construct.
"""
net = ExponentialProb1()
value = Tensor([0.2, 0.9, 1, 2, 3], dtype=dtype.float32)
rate = Tensor([0.5], dtype=dtype.float32)
ans = net(value, rate)
assert isinstance(ans, Tensor)
class ExponentialKl(nn.Cell):
"""
Test class: kl_loss between Exponential distributions.
"""
def __init__(self):
super(ExponentialKl, self).__init__()
self.e1 = msd.Exponential(0.7, dtype=dtype.float32)
self.e2 = msd.Exponential(dtype=dtype.float32)
def construct(self, rate_b, rate_a):
kl1 = self.e1.kl_loss('Exponential', rate_b)
kl2 = self.e2.kl_loss('Exponential', rate_b, rate_a)
return kl1 + kl2
def test_kl():
"""
Test kl_loss function.
"""
net = ExponentialKl()
rate_b = Tensor([0.3], dtype=dtype.float32)
rate_a = Tensor([0.7], dtype=dtype.float32)
ans = net(rate_b, rate_a)
assert isinstance(ans, Tensor)
class ExponentialCrossEntropy(nn.Cell):
"""
Test class: cross_entropy of Exponential distribution.
"""
def __init__(self):
super(ExponentialCrossEntropy, self).__init__()
self.e1 = msd.Exponential(0.3, dtype=dtype.float32)
self.e2 = msd.Exponential(dtype=dtype.float32)
def construct(self, rate_b, rate_a):
h1 = self.e1.cross_entropy('Exponential', rate_b)
h2 = self.e2.cross_entropy('Exponential', rate_b, rate_a)
return h1 + h2
def test_cross_entropy():
"""
Test cross_entropy between Exponential distributions.
"""
net = ExponentialCrossEntropy()
rate_b = Tensor([0.3], dtype=dtype.float32)
rate_a = Tensor([0.7], dtype=dtype.float32)
ans = net(rate_b, rate_a)
assert isinstance(ans, Tensor)
class ExponentialBasics(nn.Cell):
"""
Test class: basic mean/sd/mode/entropy function.
"""
def __init__(self):
super(ExponentialBasics, self).__init__()
self.e = msd.Exponential([0.3, 0.5], dtype=dtype.float32)
def construct(self):
mean = self.e.mean()
sd = self.e.sd()
var = self.e.var()
mode = self.e.mode()
entropy = self.e.entropy()
return mean + sd + var + mode + entropy
def test_bascis():
"""
Test mean/sd/var/mode/entropy functionality of Exponential distribution.
"""
net = ExponentialBasics()
ans = net()
assert isinstance(ans, Tensor)
class ExpConstruct(nn.Cell):
"""
Exponential distribution: going through construct.
"""
def __init__(self):
super(ExpConstruct, self).__init__()
self.e = msd.Exponential(0.5, dtype=dtype.float32)
self.e1 = msd.Exponential(dtype=dtype.float32)
def construct(self, value, rate):
prob = self.e('prob', value)
prob1 = self.e('prob', value, rate)
prob2 = self.e1('prob', value, rate)
return prob + prob1 + prob2
def test_exp_construct():
"""
Test probability function going through construct.
"""
net = ExpConstruct()
value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
probs = Tensor([0.5], dtype=dtype.float32)
ans = net(value, probs)
assert isinstance(ans, Tensor)