You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/distribution/test_normal.py

211 lines
6.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.Normal.
"""
import numpy as np
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_normal_shape_errpr():
"""
Invalid shapes.
"""
with pytest.raises(ValueError):
msd.Normal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
def test_type():
with pytest.raises(TypeError):
msd.Normal(0., 1., dtype=dtype.int32)
def test_name():
with pytest.raises(TypeError):
msd.Normal(0., 1., name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Normal(0., 1., seed='seed')
def test_arguments():
"""
args passing during initialization.
"""
n = msd.Normal()
assert isinstance(n, msd.Distribution)
n = msd.Normal([3.0], [4.0], dtype=dtype.float32)
assert isinstance(n, msd.Distribution)
class NormalProb(nn.Cell):
"""
Normal distribution: initialize with mean/sd.
"""
def __init__(self):
super(NormalProb, self).__init__()
self.normal = msd.Normal(3.0, 4.0, dtype=dtype.float32)
def construct(self, value):
prob = self.normal.prob(value)
log_prob = self.normal.log_prob(value)
cdf = self.normal.cdf(value)
log_cdf = self.normal.log_cdf(value)
sf = self.normal.survival_function(value)
log_sf = self.normal.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_normal_prob():
"""
Test probability functions: passing value through construct.
"""
net = NormalProb()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class NormalProb1(nn.Cell):
"""
Normal distribution: initialize without mean/sd.
"""
def __init__(self):
super(NormalProb1, self).__init__()
self.normal = msd.Normal()
def construct(self, value, mean, sd):
prob = self.normal.prob(value, mean, sd)
log_prob = self.normal.log_prob(value, mean, sd)
cdf = self.normal.cdf(value, mean, sd)
log_cdf = self.normal.log_cdf(value, mean, sd)
sf = self.normal.survival_function(value, mean, sd)
log_sf = self.normal.log_survival(value, mean, sd)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_normal_prob1():
"""
Test probability functions: passing mean/sd, value through construct.
"""
net = NormalProb1()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mean = Tensor([0.0], dtype=dtype.float32)
sd = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mean, sd)
assert isinstance(ans, Tensor)
class NormalKl(nn.Cell):
"""
Test class: kl_loss of Normal distribution.
"""
def __init__(self):
super(NormalKl, self).__init__()
self.n1 = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n2 = msd.Normal(dtype=dtype.float32)
def construct(self, mean_b, sd_b, mean_a, sd_a):
kl1 = self.n1.kl_loss('Normal', mean_b, sd_b)
kl2 = self.n2.kl_loss('Normal', mean_b, sd_b, mean_a, sd_a)
return kl1 + kl2
def test_kl():
"""
Test kl_loss.
"""
net = NormalKl()
mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
ans = net(mean_b, sd_b, mean_a, sd_a)
assert isinstance(ans, Tensor)
class NormalCrossEntropy(nn.Cell):
"""
Test class: cross_entropy of Normal distribution.
"""
def __init__(self):
super(NormalCrossEntropy, self).__init__()
self.n1 = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.n2 = msd.Normal(dtype=dtype.float32)
def construct(self, mean_b, sd_b, mean_a, sd_a):
h1 = self.n1.cross_entropy('Normal', mean_b, sd_b)
h2 = self.n2.cross_entropy('Normal', mean_b, sd_b, mean_a, sd_a)
return h1 + h2
def test_cross_entropy():
"""
Test cross entropy between Normal distributions.
"""
net = NormalCrossEntropy()
mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
ans = net(mean_b, sd_b, mean_a, sd_a)
assert isinstance(ans, Tensor)
class NormalBasics(nn.Cell):
"""
Test class: basic mean/sd function.
"""
def __init__(self):
super(NormalBasics, self).__init__()
self.n = msd.Normal(3.0, 4.0, dtype=dtype.float32)
def construct(self):
mean = self.n.mean()
sd = self.n.sd()
mode = self.n.mode()
entropy = self.n.entropy()
return mean + sd + mode + entropy
def test_bascis():
"""
Test mean/sd/mode/entropy functionality of Normal.
"""
net = NormalBasics()
ans = net()
assert isinstance(ans, Tensor)
class NormalConstruct(nn.Cell):
"""
Normal distribution: going through construct.
"""
def __init__(self):
super(NormalConstruct, self).__init__()
self.normal = msd.Normal(3.0, 4.0)
self.normal1 = msd.Normal()
def construct(self, value, mean, sd):
prob = self.normal('prob', value)
prob1 = self.normal('prob', value, mean, sd)
prob2 = self.normal1('prob', value, mean, sd)
return prob + prob1 + prob2
def test_normal_construct():
"""
Test probability function going through construct.
"""
net = NormalConstruct()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
mean = Tensor([0.0], dtype=dtype.float32)
sd = Tensor([1.0], dtype=dtype.float32)
ans = net(value, mean, sd)
assert isinstance(ans, Tensor)