You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/transform/convert.cc

1870 lines
73 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "transform/convert.h"
#include <inttypes.h>
#include <algorithm>
#include <stack>
#include "utils/utils.h"
#include "operator/ops.h"
#include "utils/log_adapter.h"
#include "utils/graph_utils.h"
#include "utils/symbolic.h"
#include "utils/config_manager.h"
#include "utils/convert_utils.h"
#include "./common.h"
namespace mindspore {
namespace transform {
using std::endl;
#define ADPT_DESC_ONE(T) std::make_shared<OpAdapterDesc>(std::make_shared<OpAdapter<T>>())
#define ADPT_DESC_TWO(T, I) \
std::make_shared<OpAdapterDesc>(std::make_shared<OpAdapter<T>>(), std::make_shared<OpAdapter<I>>())
#define GET_MACRO(_1, _2, DESC, ...) DESC
#define ADPT_DESC(...) GET_MACRO(__VA_ARGS__, ADPT_DESC_TWO, ADPT_DESC_ONE, ...)(__VA_ARGS__)
using ge::Operator;
using mindspore::kAnyValue;
using std::make_shared;
using std::shared_ptr;
using std::string;
using std::vector;
const char kNameCustomOp[] = "CustomOp";
const char kNameConst[] = "Const";
const char kNameParam[] = "parameter";
const char kNameRandomUniform[] = "RandomUniform";
const char kNameSimpleMean[] = "SimpleMean";
const char kNameSimpleMeanGrad[] = "SimpleMeanGrad";
const char kNameAllReduce[] = "AllReduce";
const char kNameBroadcast[] = "Broadcast";
const char kNameAllgather[] = "AllGather";
const char kNameReduceScatter[] = "ReduceScatter";
const char kNameReduceSum[] = "ReduceSum";
const char kNameIsFinite[] = "isFinite";
const char kNameReciprocal[] = "Reciprocal";
const char kNameRsqrt[] = "Rsqrt";
const char kNameRsqrtGrad[] = "RsqrtGrad";
const char kNameSqrt[] = "Sqrt";
const char kNameSquare[] = "Square";
const char kNameSquaredDifference[] = "SquaredDifference";
const char kNamePow[] = "Pow";
const char kNameBatchMatMul[] = "BatchMatMul";
const char kNameStridedSlice[] = "StridedSlice";
const char kNameStridedSliceGrad[] = "StridedSliceGrad";
const char kNameExpandDims[] = "ExpandDims";
const char kNameLog[] = "Log";
const char kNameLogicalAnd[] = "LogicalAnd";
const char kNameLogicalNot[] = "LogicalNot";
const char kNameLogicalOr[] = "LogicalOr";
const char kNameExp[] = "Exp";
const char kNameLessEqual[] = "LessEqual";
const char kNameGreaterEqual[] = "GreaterEqual";
const char kNameEqual[] = "Equal";
const char kNameNotEqual[] = "NotEqual";
const char kNameFlattenGrad[] = "FlattenGrad";
const char kNameConvolution[] = "Convolution";
const char kNameBiasAdd[] = "BiasAdd";
const char kNameMaxPoolGrad[] = "MaxPoolGrad";
const char kNameAvgPoolGrad[] = "AvgPoolGrad";
const char kNameMaxPoolGradWithArgmax[] = "MaxPoolGradWithArgmax";
const char kNameApplyMomentum[] = "ApplyMomentum";
const char kNameDropoutDoMask[] = "DropoutDoMask";
const char kNameResizeBilinear[] = "ResizeBilinear";
const char kNameResizeBilinearGrad[] = "ResizeBilinearGrad";
const char kNameZerosLike[] = "ZerosLike";
const char kNameOnesLike[] = "OnesLike";
const char kNameTruncatedNormal[] = "TruncatedNormal";
const char kNameSpaceToBatchNd[] = "SpaceToBatchNd";
const char kNameConfusionMatrix[] = "ConfusionMatrix";
const char kNameResizeNearestNeighborD[] = "ResizeNearestNeighbor";
const char kNameResizeNearestNeighborGrad[] = "ResizeNearestNeighborGrad";
const char kNameApplyAdam[] = "Adam";
const char kNameExtractImagePatches[] = "ExtractImagePatches";
const char kNameReLU6[] = "ReLU6";
const char kNameReLU6Grad[] = "ReLU6Grad";
const char kNameElu[] = "Elu";
const char kNameEluGrad[] = "EluGrad";
const char kNameScatterNdUpdate[] = "ScatterNdUpdate";
const char kNameNMSWithMask[] = "NMSWithMask";
const char kNameCheckValid[] = "CheckValid";
const char kNameSmoothL1Loss[] = "SmoothL1Loss";
const char kNameSmoothL1LossGrad[] = "SmoothL1LossGrad";
const char kNameSGD[] = "SGD";
const char kNameSigmoidCrossEntropyWithLogits[] = "SigmoidCrossEntropyWithLogits";
const char kNameSigmoidCrossEntropyWithLogitsGrad[] = "SigmoidCrossEntropyWithLogitsGrad";
const char kNameScatterNdD[] = "ScatterNd";
const char kNamePadD[] = "Pad";
const char kNameMirrorPad[] = "MirrorPad";
const char kNameMirrorPadGrad[] = "MirrorPadGrad";
const char kNameGatherNd[] = "GatherNd";
const char kNameArgmax[] = "Argmax";
const char kNameArgmin[] = "Argmin";
const char kNameArgMaxWithValue[] = "ArgMaxWithValue";
const char kNameArgMinWithValue[] = "ArgMinWithValue";
const char kNameReduceProd[] = "ReduceProd";
const char kNameCumProd[] = "CumProd";
const char kNameDiagpart[] = "Diagpart";
const char kNameSplitD[] = "Split";
const char kNameBatchToSpaceNd[] = "BatchToSpaceNd";
const char kNameFloor[] = "Floor";
const char kNameNPUGetFloatStatus[] = "NPUGetFloatStatus";
const char kNameAssign[] = "Assign";
const char kNameAssignAdd[] = "AssignAdd";
const char kNameAssignSub[] = "AssignSub";
const char kNameNPUAllocFloatStatus[] = "NPUAllocFloatStatus";
const char kNameNPUClearFloatStatus[] = "NPUClearFloatStatus";
const char kNameReshape[] = "Reshape";
const char kNameRealDiv[] = "RealDiv";
const char kNameTile[] = "Tile";
const char kNameCos[] = "Cos";
const char kNameACos[] = "ACos";
const char kNameACosGrad[] = "ACosGrad";
const char kNameFloorDiv[] = "FloorDiv";
const char kNameSin[] = "Sin";
const char kNamePrelu[] = "PReLU";
const char kNamePreluGrad[] = "PReLUGrad";
const char kNameSigmoid[] = "Sigmoid";
const char kNameSigmoidGrad[] = "SigmoidGrad";
const char kNameL2Normalize[] = "L2Normalize";
const char kNameL2NormalizeGrad[] = "L2NormalizeGrad";
const char kNameSoftmax[] = "Softmax";
const char kNameIOU[] = "IOU";
const char kNameBoundingBoxDecode[] = "BoundingBoxDecode";
const char kNameBoundingBoxEncode[] = "BoundingBoxEncode";
const char kNameSlice[] = "Slice";
const char kNameAddN[] = "AddN";
const char kNameLess[] = "Less";
const char kNameGreater[] = "Greater";
const char kNamePack[] = "Pack";
const char kNameUnpack[] = "Unpack";
const char kNameMerge[] = "Merge";
const char kNameGeSwitch[] = "GeSwitch";
const char kNameHuberLoss[] = "HuberLoss";
const char kNameCumSum[] = "CumSum";
const char kNameHuberLossGrad[] = "HuberLossGrad";
const char kNameSparseSoftmaxCrossEntropy[] = "SparseSoftmaxCrossEntropy";
const char kNameSparseSoftmaxCrossEntropyGrad[] = "SparseSoftmaxCrossEntropyGrad";
const char kNameTopK[] = "TopK";
const char kNameSoftmaxGrad[] = "SoftmaxGrad";
const char kNameMaxPool[] = "MaxPool";
const char kNameAvgPool[] = "AvgPool";
const char kNameMaxPoolWithArgmax[] = "MaxPoolWithArgmax";
const char kNameBatchNorm[] = "BatchNorm";
const char kNameBatchNormGrad[] = "BatchNormGrad";
const char kNameROIAlign[] = "ROIAlign";
const char kNameROIAlignGrad[] = "ROIAlignGrad";
const char kNameRandomChoiceWithMask[] = "RandomChoiceWithMask";
const char kNameAbs[] = "Abs";
const char kNameAbsGrad[] = "AbsGrad";
const char kNameBinaryCrossEntropy[] = "BinaryCrossEntropy";
const char kNameBinaryCrossEntropyGrad[] = "BinaryCrossEntropyGrad";
const char kNameSparseApplyAdagrad[] = "SparseApplyAdagrad";
const char kNameAcosh[] = "Acosh";
const char kNameFloorMod[] = "FloorMod";
const char kNameSpaceToDepth[] = "SpaceToDepth";
const char kNameDepthToSpace[] = "DepthToSpace";
const char kNameSign[] = "Sign";
const char kNameLARSUpdate[] = "LARSUpdate";
const char kNameRound[] = "Round";
const char kNamePrint[] = "Print";
const char kNameApplyFtrl[] = "ApplyFtrl";
const char kNameDiag[] = "Diag";
const char kNameDiagPart[] = "DiagPart";
const char kNameSpaceToBatch[] = "SpaceToBatch";
const char kNameBatchToSpace[] = "BatchToSpace";
const char kNameAtan2[] = "Atan2";
const char kNameApplyRMSProp[] = "ApplyRMSProp";
const char kNameApplyCenteredRMSProp[] = "ApplyCenteredRMSProp";
// -----------------OpAdapter initialization--------------
std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_map() {
static std::unordered_map<std::string, OpAdapterDescPtr> adpt_map = {
{string(kNameCustomOp), ADPT_DESC(Operator)},
{string(kNameIOU), ADPT_DESC(Iou)},
{string(kNameGreaterEqual), ADPT_DESC(GreaterEqual)},
{string(kNameSlice), ADPT_DESC(SliceD)},
{string(kNameApplyMomentum), ADPT_DESC(ApplyMomentum)},
{string(kNameMaxPool), ADPT_DESC(MaxPool)},
{string(kNameAvgPool), ADPT_DESC(AvgPool)},
{string(kNameMaxPoolWithArgmax), ADPT_DESC(MaxPoolWithArgmax)},
{string(kNameTopK), ADPT_DESC(TopKV2)},
{string(kNamePack), ADPT_DESC(Pack)},
{string(kNameUnpack), ADPT_DESC(Unpack)},
{string(kNameSplitD), ADPT_DESC(SplitD)},
{string(kNameAllReduce), ADPT_DESC(HcomAllReduce)},
{string(kNameBroadcast), ADPT_DESC(HcomBroadcast)},
{string(kNameAllgather), ADPT_DESC(HcomAllGather)},
{string(kNameReduceScatter), ADPT_DESC(HcomReduceScatter)},
{string(kNameMaxPoolGrad), ADPT_DESC(MaxPoolGrad)},
{string(kNameAvgPoolGrad), ADPT_DESC(AvgPoolGrad)},
{string(kNameMaxPoolGradWithArgmax), ADPT_DESC(MaxPoolGradWithArgmax)},
{string(kNameExtractImagePatches), ADPT_DESC(ExtractImagePatches)},
{prim::kPrimAssign->name(), ADPT_DESC(Assign)},
{prim::kPrimStateSetItem->name(), ADPT_DESC(Assign)},
{prim::kPrimReluGrad->name(), ADPT_DESC(ReluGrad)},
{prim::kPrimFusedBatchNormGrad->name(), ADPT_DESC(FusedBatchNormGrad)},
{prim::kPrimBiasAddGrad->name(), ADPT_DESC(BiasAddGrad)},
{prim::kPrimConv2D->name(), ADPT_DESC(Conv2D)},
{prim::kPrimConv2DBackpropInput->name(), ADPT_DESC(Conv2DBackpropInputD)},
{prim::kPrimConv2DBackpropFilter->name(), ADPT_DESC(Conv2DBackpropFilterD)},
{prim::kPrimDepthwiseConv2dNative->name(), ADPT_DESC(DepthwiseConv2D)},
{prim::kPrimDepthwiseConv2dNativeBackpropFilter->name(), ADPT_DESC(DepthwiseConv2DBackpropFilterD)},
{prim::kPrimDepthwiseConv2dNativeBackpropInput->name(), ADPT_DESC(DepthwiseConv2DBackpropInputD)},
{prim::kPrimFusedBatchNorm->name(), ADPT_DESC(FusedBatchNorm, BatchNorm)},
{string(kNameBatchNorm), ADPT_DESC(BatchNorm)},
{string(kNameBatchNormGrad), ADPT_DESC(BatchNormGrad)},
{string(kNameReshape), ADPT_DESC(Reshape)},
{string(kNameFlattenGrad), ADPT_DESC(Reshape)},
{prim::kPrimFlatten->name(), ADPT_DESC(Flatten)},
{string(kNameAddN), ADPT_DESC(AddN)},
{string(kNameLess), ADPT_DESC(Less)},
{string(kNameSqrt), ADPT_DESC(Sqrt)},
{string(kNameRsqrt), ADPT_DESC(Rsqrt)},
{string(kNameSquare), ADPT_DESC(Square)},
{prim::kPrimTanh->name(), ADPT_DESC(Tanh)},
{prim::kPrimTanhGrad->name(), ADPT_DESC(TanhGrad)},
{string(kNameResizeNearestNeighborD), ADPT_DESC(ResizeNearestNeighborD)},
{string(kNameResizeNearestNeighborGrad), ADPT_DESC(ResizeNearestNeighborGrad)},
{string(kNameApplyAdam), ADPT_DESC(ApplyAdam)},
{string(kNameReLU6), ADPT_DESC(Relu6)},
{string(kNameReLU6Grad), ADPT_DESC(Relu6Grad)},
{string(kNameElu), ADPT_DESC(Elu)},
{string(kNameEluGrad), ADPT_DESC(EluGrad)},
{string(kNameResizeBilinearGrad), ADPT_DESC(ResizeBilinearGrad)},
{string(kNameResizeBilinear), ADPT_DESC(ResizeBilinearD)},
{string(kNameZerosLike), ADPT_DESC(ZerosLike)},
{string(kNameOnesLike), ADPT_DESC(OnesLike)},
{string(kNameScatterNdUpdate), ADPT_DESC(ScatterNdUpdate)},
{string(kNameNMSWithMask), ADPT_DESC(NMSWithMask)},
{string(kNameCheckValid), ADPT_DESC(CheckValid)},
{string(kNameSmoothL1Loss), ADPT_DESC(SmoothL1Loss)},
{string(kNameSmoothL1LossGrad), ADPT_DESC(SmoothL1LossGrad)},
{string(kNameSigmoidCrossEntropyWithLogits), ADPT_DESC(SigmoidCrossEntropyWithLogits)},
{string(kNameSigmoidCrossEntropyWithLogitsGrad), ADPT_DESC(SigmoidCrossEntropyWithLogitsGrad)},
{string(kNameScatterNdD), ADPT_DESC(ScatterNdD)},
{string(kNamePadD), ADPT_DESC(PadD)},
{string(kNameMirrorPad), ADPT_DESC(MirrorPad)},
{string(kNameMirrorPadGrad), ADPT_DESC(MirrorPadGrad)},
{string(kNameGatherNd), ADPT_DESC(GatherNd)},
{string(kNameArgmax), ADPT_DESC(ArgMaxD)},
{string(kNameArgmin), ADPT_DESC(ArgMinD)},
{string(kNameArgMaxWithValue), ADPT_DESC(ArgMaxWithValue)},
{string(kNameArgMinWithValue), ADPT_DESC(ArgMinWithValue)},
{prim::kPrimReduceSum->name(), ADPT_DESC(ReduceSumD)},
{prim::kPrimReduceMean->name(), ADPT_DESC(ReduceMeanD)},
{prim::kPrimReduceAll->name(), ADPT_DESC(ReduceAllD)},
{prim::kPrimReduceMin->name(), ADPT_DESC(ReduceMinD)},
{prim::kPrimReduceMax->name(), ADPT_DESC(ReduceMaxD)},
{string(kNameLARSUpdate), ADPT_DESC(LarsV2Update)},
{string(kNameReduceProd), ADPT_DESC(ReduceProdD)},
{string(kNameCumProd), ADPT_DESC(CumprodD)},
{string(kNameMerge), ADPT_DESC(Merge)},
{string(kNameGeSwitch), ADPT_DESC(Switch)},
{string(kNameCumSum), ADPT_DESC(CumsumD)},
{prim::kPrimMul->name(), ADPT_DESC(Mul)},
{string(kNameTile), ADPT_DESC(TileD)},
{prim::kPrimOneHot->name(), ADPT_DESC(OneHot)},
{prim::kPrimGatherV2->name(), ADPT_DESC(GatherV2D)},
{string(kNameCos), ADPT_DESC(Cos)},
{string(kNameACos), ADPT_DESC(Acos)},
{string(kNameACosGrad), ADPT_DESC(AcosGrad)},
{string(kNameFloor), ADPT_DESC(Floor)},
{string(kNameFloorDiv), ADPT_DESC(FloorDiv)},
{string(kNameSin), ADPT_DESC(Sin)},
{string(kNameExp), ADPT_DESC(Exp)},
{string(kNameBoundingBoxEncode), ADPT_DESC(BoundingBoxEncode)},
{string(kNameBoundingBoxDecode), ADPT_DESC(BoundingBoxDecode)},
{prim::kPrimCast->name(), ADPT_DESC(Cast)},
{string(kNameRealDiv), ADPT_DESC(RealDiv)},
{prim::kPrimNeg->name(), ADPT_DESC(Neg)},
{prim::kPrimTranspose->name(), ADPT_DESC(TransposeD)},
{prim::kPrimSub->name(), ADPT_DESC(Sub)},
{string(kNameReciprocal), ADPT_DESC(Reciprocal)},
{prim::kPrimDropoutGenMask->name(), ADPT_DESC(DropOutGenMask)},
{string(kNameAssignAdd), ADPT_DESC(AssignAdd)},
{string(kNameAssignSub), ADPT_DESC(AssignSub)},
{prim::kPrimConcat->name(), ADPT_DESC(ConcatD)},
{string(kNamePow), ADPT_DESC(Pow)},
{string(kNameExp), ADPT_DESC(Exp)},
{string(kNameEqual), ADPT_DESC(Equal)},
{string(kNameNotEqual), ADPT_DESC(NotEqual)},
{string(kNameLog), ADPT_DESC(Log)},
{string(kNameLogicalAnd), ADPT_DESC(LogicalAnd)},
{string(kNameLogicalNot), ADPT_DESC(LogicalNot)},
{string(kNameLogicalOr), ADPT_DESC(LogicalOr)},
{string(kNameGreater), ADPT_DESC(Greater)},
{prim::kPrimMaximum->name(), ADPT_DESC(Maximum)},
{prim::kPrimRelu->name(), ADPT_DESC(Relu)},
{string(kNamePrelu), ADPT_DESC(PRelu)},
{string(kNamePreluGrad), ADPT_DESC(PReluGrad)},
{string(kNameSigmoid), ADPT_DESC(Sigmoid)},
{string(kNameSigmoidGrad), ADPT_DESC(SigmoidGrad)},
{string(kNameSGD), ADPT_DESC(SGD)},
{prim::kPrimLogSoftmaxGrad->name(), ADPT_DESC(LogSoftmaxGrad)},
{prim::kPrimMaximumGrad->name(), ADPT_DESC(MaximumGrad)},
{prim::kPrimMinimumGrad->name(), ADPT_DESC(MinimumGrad)},
{string(kNameL2Normalize), ADPT_DESC(L2Normalize)},
{string(kNameL2NormalizeGrad), ADPT_DESC(L2NormalizeGrad)},
{prim::kPrimMinimum->name(), ADPT_DESC(Minimum)},
{prim::kPrimSelect->name(), ADPT_DESC(Select)},
{string(kNameLessEqual), ADPT_DESC(LessEqual)},
{prim::kPrimLogSoftmax->name(), ADPT_DESC(LogSoftmax)},
{string(kNameTruncatedNormal), ADPT_DESC(TruncatedNormal)},
{string(kNameStridedSliceGrad), ADPT_DESC(StridedSliceGrad)},
{prim::kPrimGelu->name(), ADPT_DESC(Gelu)},
{prim::kPrimGeluGrad->name(), ADPT_DESC(GeluGrad)},
{string(kNameStridedSlice), ADPT_DESC(StridedSlice)},
{prim::kPrimUnsortedSegmentSum->name(), ADPT_DESC(UnsortedSegmentSumD)},
{string(kNameExpandDims), ADPT_DESC(ExpandDims)},
{prim::kPrimSqueeze->name(), ADPT_DESC(Squeeze)},
{prim::kPrimLayerNorm->name(), ADPT_DESC(LayerNorm)},
{prim::kPrimLayerNormGrad->name(), ADPT_DESC(LayerNormGrad)},
{string(kNameBatchMatMul), ADPT_DESC(BatchMatMul)},
{string(kNameDropoutDoMask), ADPT_DESC(DropOutDoMask)},
{string(kNameNPUGetFloatStatus), ADPT_DESC(NPUGetFloatStatus)},
{string(kNameNPUAllocFloatStatus), ADPT_DESC(NPUAllocFloatStatus)},
{string(kNameNPUClearFloatStatus), ADPT_DESC(NPUClearFloatStatus)},
{string(kNameRandomChoiceWithMask), ADPT_DESC(RandomChoiceWithMask)},
{prim::kPrimSoftmaxCrossEntropyWithLogits->name(), ADPT_DESC(SoftmaxCrossEntropyWithLogits)},
{prim::kPrimScalarSummary->name(), ADPT_DESC(Summary)},
{prim::kPrimImageSummary->name(), ADPT_DESC(Summary)},
{prim::kPrimTensorSummary->name(), ADPT_DESC(Summary)},
{prim::kPrimHistogramSummary->name(), ADPT_DESC(Summary)},
{prim::kPrimTensorAdd->name(),
std::make_shared<OpAdapterDesc>(std::make_shared<OpAdapter<Add>>(ExtraAttr({{"mode", MakeValue(1)}})),
std::make_shared<OpAdapter<Add>>(ExtraAttr({{"mode", MakeValue(1)}})))},
{string(kNameBiasAdd), ADPT_DESC(BiasAdd)},
{prim::kPrimRelu->name(), ADPT_DESC(Relu)},
{prim::kPrimMatMul->name(), ADPT_DESC(MatMul)},
{string(kNameConst), ADPT_DESC(Constant, Const)},
{string(kNameSoftmax), ADPT_DESC(Softmax)},
{string(kNameSoftmaxGrad), ADPT_DESC(SoftmaxGrad)},
{string(kNameParam), ADPT_DESC(Data)},
{string(kNameROIAlign), ADPT_DESC(ROIAlign)},
{string(kNameROIAlignGrad), ADPT_DESC(ROIAlignGrad)},
{string(kNameAbs), ADPT_DESC(Abs)},
{string(kNameAbsGrad), ADPT_DESC(AbsGrad)},
{string(kNameBinaryCrossEntropy), ADPT_DESC(BinaryCrossEntropy)},
{string(kNameBinaryCrossEntropyGrad), ADPT_DESC(BinaryCrossEntropyGrad)},
{string(kNameSparseApplyAdagrad), ADPT_DESC(SparseApplyAdagradD)},
{string(kNameAcosh), ADPT_DESC(Acosh)},
{string(kNameFloorMod), ADPT_DESC(FloorMod)},
{string(kNameSpaceToDepth), ADPT_DESC(SpaceToDepth)},
{string(kNameDepthToSpace), ADPT_DESC(DepthToSpace)},
{string(kNameSign), ADPT_DESC(Sign)},
{string(kNameRound), ADPT_DESC(Round)},
{string(kNameApplyFtrl), ADPT_DESC(ApplyFtrl)},
{string(kNameDiag), ADPT_DESC(Diag)},
{string(kNameDiagPart), ADPT_DESC(DiagPart)},
{string(kNameSpaceToBatch), ADPT_DESC(SpaceToBatchD)},
{string(kNameBatchToSpace), ADPT_DESC(BatchToSpaceD)},
{string(kNameAtan2), ADPT_DESC(Atan2)},
{string(kNameApplyRMSProp), ADPT_DESC(ApplyRMSPropD)},
{string(kNameApplyCenteredRMSProp), ADPT_DESC(ApplyCenteredRMSProp)}};
#ifdef ENABLE_GE
adpt_map[string(kNamePrint)] = ADPT_DESC(Print);
#endif
return adpt_map;
}
// ---------------implement of DfGraphConvertor-------------
PrimType GetCNodeFuncType(const CNodePtr cnode) {
if (cnode->inputs().empty()) {
return kPrimTypeUnknown;
}
AnfNodePtr valuenode = cnode->input(0);
if (IsValueNode<Primitive>(valuenode)) {
// check whether the valuenode is primitive
return GetValueNode<PrimitivePtr>(valuenode)->prim_type();
}
return kPrimTypeUnknown;
}
OpAdapterPtr DfGraphConvertor::FindAdapter(const AnfNodePtr node, bool train) {
if (node->isa<CNode>()) {
auto cnode = node->cast<CNodePtr>();
std::string name = kNameCustomOp;
if (!IsCustomCNode(cnode)) {
name = GetCNodeFuncName(cnode);
}
auto it_adpt = get_adpt_map().find(name);
if (it_adpt != get_adpt_map().end()) {
return it_adpt->second->Get(train);
} else {
MS_LOG(ERROR) << "Can't find OpAdapter for " << name;
}
}
if (node->isa<ValueNode>()) {
return get_adpt_map()[kNameConst]->Get(train);
}
if (node->isa<Parameter>()) {
return get_adpt_map()[kNameParam]->Get(train);
}
return OpAdapterPtr(nullptr);
}
void DfGraphConvertor::InitLoopVar(std::vector<ge::Operator> *init_input) {
if (this->training_) {
GeTensorDesc desc(GeShape(), ge::FORMAT_NCHW, ge::DT_INT64);
auto var_iter_num = std::make_shared<Variable>("npu_runconfig/iterations_per_loop");
auto var_loop_cond = std::make_shared<Variable>("npu_runconfig/loop_cond");
auto var_one = std::make_shared<Variable>("npu_runconfig/one");
auto var_zero = std::make_shared<Variable>("npu_runconfig/zero");
(void)var_iter_num->update_output_desc_y(desc);
(void)var_loop_cond->update_output_desc_y(desc);
(void)var_one->update_output_desc_y(desc);
(void)var_zero->update_output_desc_y(desc);
vars_["npu_runconfig/iterations_per_loop"] = var_iter_num;
vars_["npu_runconfig/loop_cond"] = var_loop_cond;
vars_["npu_runconfig/one"] = var_one;
vars_["npu_runconfig/zero"] = var_zero;
int64_t value = 0;
auto const_iter_num = std::make_shared<Constant>("const/npu_runconfig/iterations_per_loop");
if (ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) {
value = ConfigManager::GetInstance().iter_num();
} else {
MS_LOG(INFO) << "Run with normal(non-sink) mode, the iterator number will always be 1";
value = 1;
ConfigManager::GetInstance().set_iter_num(value);
}
value -= 1; // iteration start from 0, the max iteration number for n loop should be n-1
(void)const_iter_num->set_attr_value(GeTensor(desc, reinterpret_cast<uint8_t *>(&value), sizeof(int64_t)));
auto const_loop_cond = std::make_shared<Constant>("const/npu_runconfig/loop_cond");
value = 0;
(void)const_loop_cond->set_attr_value(GeTensor(desc, reinterpret_cast<uint8_t *>(&value), sizeof(int64_t)));
auto const_one = std::make_shared<Constant>("const/npu_runconfig/one");
value = 1;
(void)const_one->set_attr_value(GeTensor(desc, reinterpret_cast<uint8_t *>(&value), sizeof(int64_t)));
auto const_zero = std::make_shared<Constant>("const/npu_runconfig/zero");
value = 0;
(void)const_zero->set_attr_value(GeTensor(desc, reinterpret_cast<uint8_t *>(&value), sizeof(int64_t)));
(void)const_iter_num->update_output_desc_y(desc);
(void)const_loop_cond->update_output_desc_y(desc);
(void)const_one->update_output_desc_y(desc);
(void)const_zero->update_output_desc_y(desc);
auto assign_iter_num = std::make_shared<Assign>("assign/npu_runconfig/iterations_per_loop");
(void)assign_iter_num->set_input_ref(*var_iter_num).set_input_value(*const_iter_num);
auto assign_loop_cond = std::make_shared<Assign>("assign/npu_runconfig/loop_cond");
(void)assign_loop_cond->set_input_ref(*var_loop_cond).set_input_value(*const_loop_cond);
auto assign_one = std::make_shared<Assign>("assign/npu_runconfig/one");
(void)assign_one->set_input_ref(*var_one).set_input_value(*const_one);
auto assign_zero = std::make_shared<Assign>("assign/npu_runconfig/zero");
(void)assign_zero->set_input_ref(*var_zero).set_input_value(*const_zero);
init_input->push_back(*var_iter_num);
init_input->push_back(*var_loop_cond);
init_input->push_back(*var_one);
init_input->push_back(*var_zero);
init_ops_.push_back(var_iter_num);
init_ops_.push_back(var_loop_cond);
init_ops_.push_back(var_one);
init_ops_.push_back(var_zero);
init_ops_.push_back(const_iter_num);
init_ops_.push_back(const_loop_cond);
init_ops_.push_back(const_one);
init_ops_.push_back(const_zero);
init_ops_.push_back(assign_iter_num);
init_ops_.push_back(assign_loop_cond);
init_ops_.push_back(assign_one);
init_ops_.push_back(assign_zero);
}
}
OpAdapterPtr DfGraphConvertor::FindAdapter(const std::string &name, bool train) {
auto it = get_adpt_map().find(name);
if (it != get_adpt_map().end()) {
return it->second->Get(train);
}
MS_LOG(ERROR) << "Can't find OpAdapter for " << name;
return transform::OpAdapterPtr(nullptr);
}
void DfGraphConvertor::DrawParamInitSubGraph(const std::string &name, const AnfNodePtr &it) {
// draw init subgraph
init_sout_ << "op_assign" << it.get() << "[label=<";
init_sout_ << "<table border='1' cellborder='1'>" << endl;
init_sout_ << "<tr>";
init_sout_ << "<td port='1'>resource</td>";
init_sout_ << "<td port='2'>value</td>";
init_sout_ << "</tr>" << endl;
init_sout_ << "<tr><td colspan=\"2\">"
<< "\"assign_" << name << "\"</td></tr>" << endl;
init_sout_ << "</table>> shape=plaintext]" << endl;
init_sout_ << "param" << it.get() << "[shape=octagon, label=\"" << name << "\"]" << endl;
init_sout_ << "const" << it.get() << "[label= \"" << name << "_const"
<< "\" shape=ellipse]" << endl;
init_sout_ << "param" << it.get() << "->"
<< "op_assign" << it.get() << ":1" << endl;
init_sout_ << "const" << it.get() << "->"
<< "op_assign" << it.get() << ":2" << endl;
}
void DfGraphConvertor::SetupParamInitSubGraph(const TensorOrderMap &tensors, std::vector<ge::Operator> *init_input) {
DfGraphPtr init_graph = std::make_shared<DfGraph>("init");
std::vector<AnfNodePtr> nodes = TopoSort(anf_graph_->get_return());
for (auto &it : nodes) {
if (it->isa<ValueNode>()) {
if (IsValueNode<SymbolicKeyInstance>(it)) {
auto symbolic = GetValueNode<SymbolicKeyInstancePtr>(it);
auto name = std::static_pointer_cast<Parameter>(symbolic->node())->name();
auto iter = vars_.find(name); // get correspoding varaible op
if (iter != vars_.end()) {
op_cache_[it.get()] = iter->second;
// #ifdef DRAW_GE_GRAPH
compute_sout_ << op_draw_name_[params_[name].get()] << " -> " << op_draw_name_[it.get()]
<< "[style=\"dotted\"]" << endl;
// #endif
}
} else if (IsValueNode<RefKey>(it)) {
auto refkey = GetValueNode<RefKeyPtr>(it);
auto name = refkey->tag();
auto iter = vars_.find(name); // get correspoding varaible op
if (iter != vars_.end()) {
op_cache_[it.get()] = iter->second;
compute_sout_ << op_draw_name_[params_[name].get()] << " -> " << op_draw_name_[it.get()]
<< "[style=\"dotted\"]" << endl;
}
}
}
}
for (auto &it : tensors) {
if (vars_.find(it.first) == vars_.end()) {
MS_LOG(WARNING) << "Init parameter " << it.first << " didn't appear in graph.";
vars_[it.first] = nullptr;
}
}
// set up init sub graph
if (init_input->size()) {
// init sub graph needs no input
MS_LOG(INFO) << "Build data init subgraph.";
(void)init_graph->SetInputs(*init_input);
this->init_graph_ = init_graph;
} else {
this->init_graph_ = nullptr;
}
}
void DfGraphConvertor::MakeDatasetHandler(const std::string &name, const size_t &input_idx, const AnfNodePtr &it) {
MS_LOG(INFO) << "The " << name << " is the " << input_idx << "(st/nd/th) input";
if (ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) {
auto getnext_idx = static_cast<int64_t>(input_idx);
DatasetGraphParam param = ConfigManager::GetInstance().dataset_param();
if (!param.input_indexes().empty() && input_idx <= param.input_indexes().size()) {
getnext_idx = param.input_indexes()[input_idx] - 1; // input_idx start from 0.
MS_LOG(INFO) << "remap input_index:" << input_idx << " to getnext_index:" << getnext_idx << ".";
}
// use iterator_getnext op with output_name instead of data op in BuildGraph.
out_handle_cache_[it.get()] = OutHandler(dataset_iter_getnext_, "y" + std::to_string(getnext_idx));
}
}
void DfGraphConvertor::SetupBroadcast(const std::shared_ptr<HcomBroadcast> &broadcast,
const std::vector<GeTensorDesc> &broadcast_desc,
const DfGraphPtr &broadcast_graph, std::vector<ge::Operator> broadcast_input) {
MS_LOG(INFO) << "build broadcast subgraph";
if (broadcast_desc.size() != broadcast_input.size()) {
MS_LOG(EXCEPTION) << "Desc number of BroadCast is not equal to number of Input";
}
(void)broadcast->create_dynamic_input_x(static_cast<unsigned int>(broadcast_input.size()));
(void)broadcast->create_dynamic_output_y(static_cast<unsigned int>(broadcast_desc.size()));
for (unsigned int i = 0; i < broadcast_input.size(); i++) {
(void)broadcast->set_dynamic_input_x(i, broadcast_input[i]);
(void)broadcast->update_dynamic_output_desc_y(i, broadcast_desc[i]);
}
(void)broadcast_graph->SetInputs(broadcast_input);
this->broadcast_graph_ = broadcast_graph;
}
void DfGraphConvertor::InitParamWithData(const TensorOrderMap &tensors) {
int index = 0;
std::vector<Operator> init_input;
for (auto it : tensors) {
std::string name = it.first;
auto node_itor = params_.find(name);
// if name not in params_, create a node in graph
if (node_itor == params_.end()) {
MS_LOG(WARNING) << name << " is not in params, and create a new node.";
ParameterPtr param = anf_graph_->add_parameter();
name = name + "_temp";
param->set_name(name);
(void)ConvertParameter(param);
node_itor = params_.find(name);
}
auto node = node_itor->second;
auto op_itor = op_cache_.find(node.get());
if (op_itor == op_cache_.end()) {
MS_LOG(EXCEPTION) << "Can not find op for node " << node->ToString() << ".";
}
auto adpt = FindAdapter(kNameParam, training_);
if (adpt == nullptr) continue;
auto param_op = adpt->generate(name + "_data");
MS_LOG(INFO) << "Add parameter " << name << " as input, index " << index << ".";
(void)std::static_pointer_cast<Data>(param_op)->set_attr_index(index++);
if (!training_) {
auto adpt_const = FindAdapter(kNameConst, training_);
if (adpt_const == nullptr) continue;
auto const_op = adpt_const->generate(name + "_const");
(void)adpt_const->setAttr(const_op, "value", it.second);
auto const_op_desc = TransformUtil::GetGeTensorDesc(it.second->shape_c(), it.second->data_type(), kOpFormat_NCHW);
if (const_op_desc == nullptr) {
MS_LOG(ERROR) << "Create variable " << name << " ouptut descriptor failed!";
continue;
}
(void)std::static_pointer_cast<Constant>(const_op)->update_output_desc_y(*const_op_desc);
vars_[name] = const_op;
op_itor->second = const_op;
continue;
}
// create tensor descriptor for output descriptor
auto desc = TransformUtil::GetGeTensorDesc(it.second->shape_c(), it.second->data_type(), kOpFormat_NCHW);
if (desc == nullptr) {
MS_LOG(ERROR) << "Create variable " << name << " ouptut descriptor failed!";
continue;
}
// we need three variable ops for each graph with same name
// build init subgraph
auto init_var = std::make_shared<Variable>(name);
auto assign_op = std::make_shared<Assign>("assign_" + name);
(void)init_var->update_output_desc_y(*desc);
(void)assign_op->set_input_ref(*init_var).set_input_value(*param_op);
init_input.push_back(*init_var);
init_ops_.push_back(param_op);
init_ops_.push_back(assign_op);
init_ops_.push_back(init_var);
auto variable = std::make_shared<Variable>(name);
(void)variable->update_output_desc_y(*desc);
// do not use read variable while variable sink
MS_LOG(DEBUG) << "InitParam, op_name = " << name << ", var = " << variable->GetName() << ".";
op_itor->second = variable; // replace parameter with variable
vars_[name] = variable; // prevent the variable operator from being freed
DrawParamInitSubGraph(name, node);
}
InitLoopVar(&init_input);
SetupParamInitSubGraph(tensors, &init_input);
}
// convert all parameter need initialize to variable
DfGraphConvertor &DfGraphConvertor::InitParam(const TensorOrderMap &tensors) {
size_t input_idx = 0;
if (error_ != 0) {
return *this;
}
if (anf_graph_ == nullptr || anf_graph_->output() == nullptr) {
error_ = INVALID_ARGUMENT;
MS_LOG(ERROR) << "Invalid AnfGraph in InitParam.";
return *this;
}
// Processing input with MakeDatasetHandler
for (auto &it : anf_graph_->parameters()) {
auto op_itor = op_cache_.find(it.get()); // converted node
if (it->isa<Parameter>() && op_itor != op_cache_.end()) {
string name = std::static_pointer_cast<Parameter>(it)->name();
auto tensor_itor = tensors.find(name); // in init value map
if (tensor_itor == tensors.end()) {
DfGraphConvertor::MakeDatasetHandler(name, input_idx, it);
input_idx++;
}
}
}
InitParamWithData(tensors);
init_sout_ << "}" << endl;
return *this;
}
#if (defined ENABLE_GE)
void DfGraphConvertor::BuildSaveCheckpointGraph() {
std::vector<Operator> graph_inputs;
ge::op::Save save_op("save_parms");
int save_op_is_active = 0;
size_t index = 0;
string name;
int32_t count_size = std::count_if(vars_.begin(), vars_.end(), [](const std::pair<std::string, OperatorPtr> &it) {
return (it.second == nullptr || it.first.find("/") != std::string::npos);
});
(void)save_op.create_dynamic_input_tensors(vars_.size() - static_cast<size_t>(count_size));
// for each "parameter" in anf graph excluding "input"
for (const auto &it : vars_) {
name = it.first;
if (it.second == nullptr || name.find("/") != std::string::npos) continue;
Variable variable(name);
(void)variable.update_output_desc_y(it.second->GetOutputDesc(0));
(void)save_op.set_dynamic_input_tensors(index++, variable);
graph_inputs.push_back(variable);
if (save_op_is_active == 0) {
checkpoint_sout_ << "op_save" << &save_op << "[label=<";
checkpoint_sout_ << "<table border='1' cellborder='1'>" << endl;
checkpoint_sout_ << "<tr><td port='1'>tensor</td></tr>" << endl;
checkpoint_sout_ << "<tr><td colspan=\"1\">"
<< "\"saveop"
<< "\"</td></tr>" << endl;
checkpoint_sout_ << "</table>> shape=plaintext]" << endl;
}
checkpoint_sout_ << "param" << it.second << "[shape=octagon, label=\"" << name << "\"]" << endl;
checkpoint_sout_ << "param" << it.second << "->"
<< "op_save" << &save_op << ":1" << endl;
save_op_is_active = 1;
}
if (save_op_is_active) {
std::vector<Operator> graph_output;
graph_output.emplace_back(save_op);
DfGraphPtr checkpoint_graph = std::make_shared<DfGraph>("checkpoint");
(void)checkpoint_graph->SetInputs(graph_inputs);
(void)checkpoint_graph->SetOutputs(graph_output);
this->save_ckp_graph_ = checkpoint_graph;
} else {
this->save_ckp_graph_ = nullptr;
}
checkpoint_sout_ << "}" << endl;
return;
}
#endif
DfGraphConvertor &DfGraphConvertor::GenerateBroadcastGraph(const TensorOrderMap &tensors) {
if (error_ != 0) {
return *this;
}
if (anf_graph_ == nullptr || anf_graph_->output() == nullptr) {
error_ = INVALID_ARGUMENT;
MS_LOG(ERROR) << "Invalid AnfGraph in generate broadcast graph";
return *this;
}
DfGraphPtr broadcast_graph = std::make_shared<DfGraph>("broadcast");
// collect the operators create for broadcast sub graph, in order to avoid auto release
std::vector<Operator> broadcast_input;
std::vector<GeTensorDesc> broadcast_desc;
auto broadcast = std::make_shared<HcomBroadcast>("broadcast_parameter");
(void)broadcast->set_attr_root_rank(0);
(void)broadcast->set_attr_group("hccl_world_group");
broadcast_ops_.push_back(broadcast);
// find every parameter, build broadcast subgraph (or initialize the parameter with constant)
for (auto &it : anf_graph_->parameters()) {
auto op_itor = op_cache_.find(it.get()); // converted node
if (it->isa<Parameter>() && op_itor != op_cache_.end()) {
string name = std::static_pointer_cast<Parameter>(it)->name();
auto tensor_itor = tensors.find(name); // in init tensor map
if (tensor_itor != tensors.end()) {
auto tensor = tensor_itor->second;
auto shape_ge = tensor->shape_c();
// create tensor descriptor for output descriptor
auto desc = TransformUtil::GetGeTensorDesc(shape_ge, tensor->data_type(), kOpFormat_NCHW);
if (desc == nullptr) {
MS_LOG(ERROR) << "Create variable " << name << " ouptut descriptor failed!";
continue;
}
// build broadcast subgraph
if (distribute_) {
auto broadcast_var = std::make_shared<Variable>(name);
(void)broadcast_var->update_output_desc_y(*desc);
broadcast_input.push_back(*broadcast_var);
broadcast_desc.push_back(*desc);
broadcast_ops_.push_back(broadcast_var);
}
}
}
}
// set up broadcast sub graph
if (!broadcast_input.empty()) {
DfGraphConvertor::SetupBroadcast(broadcast, broadcast_desc, broadcast_graph, broadcast_input);
} else {
this->broadcast_graph_ = nullptr;
}
return *this;
}
DfGraphConvertor &DfGraphConvertor::GenerateCheckpointGraph() {
if (error_ != 0) {
MS_LOG(ERROR) << "Generate checkpoint graph failed, found error code " << error_ << ".";
return *this;
}
if (anf_graph_ == nullptr || anf_graph_->output() == nullptr) {
error_ = INVALID_ARGUMENT;
MS_LOG(ERROR) << "Invalid AnfGraph in GenerateCheckpointGraph";
return *this;
}
#if (defined ENABLE_GE)
BuildSaveCheckpointGraph();
// Restoring from checkpoint file is done by pyfront, not in graph now.
#endif
return *this;
}
DfGraphConvertor &DfGraphConvertor::ConvertAllNode() {
if (error_ != 0) {
return *this;
}
if (anf_graph_ == nullptr || anf_graph_->output() == nullptr) {
MS_LOG(ERROR) << "Invalid AnfGraph";
error_ = FAILED;
return *this;
}
compute_sout_.clear();
compute_sout_ << "digraph {" << endl;
init_sout_.clear();
init_sout_ << "digraph {" << endl;
checkpoint_sout_.clear();
checkpoint_sout_ << "digraph {" << endl;
restore_checkpoint_sout_.clear();
restore_checkpoint_sout_ << "digraph {" << endl;
// Convert all anf node to Operator
MS_LOG(DEBUG) << "convert all node";
std::vector<AnfNodePtr> nodes = TopoSort(anf_graph_->get_return());
for (auto &it : nodes) {
(void)Convert(it);
if (this->error_ != 0) {
MS_LOG(ERROR) << "failed to convert node: " << it->DebugString() << ".";
}
}
// Create dataset iterator and iterator_getnext node
if (ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) {
DatasetGraphParam param = ConfigManager::GetInstance().dataset_param();
MS_LOG(INFO) << "Dataset param is " << param.ToString() << ".";
// GetNext
auto iter_getnext_op = make_shared<ge::op::GetNext>("get_next_tmp");
(void)iter_getnext_op->set_attr_output_types(param.ge_types());
(void)iter_getnext_op->set_attr_output_shapes(param.shapes());
(void)iter_getnext_op->set_attr_channel_name(param.queue_name());
// save iter_getnext_op for later use
dataset_iter_getnext_ = iter_getnext_op;
}
// return the data flow graph
return *this;
}
void DfGraphConvertor::TraceOutputFromTupleGetItem(const AnfNodePtr &anf_out) {
auto it = out_handle_cache_.find(anf_out.get());
if (it != out_handle_cache_.end()) {
OutHandler handle = it->second;
auto op = handle.op;
if (op != nullptr) {
MS_LOG(INFO) << "op name: " << op->GetName() << ", op type: " << op->GetOpType() << ", out_name: " << handle.out;
graph_outputs_.emplace_back(std::make_pair(*op, handle.out));
} else {
MS_LOG(EXCEPTION) << "tuple_getitem: " << anf_out->fullname_with_scope() << " is not converted";
}
} else {
// invalid tuple_getitem e.g. tuple_getitem(tuple_getitem())/tuple_getitem(depend())/tuple_getitem(make_tuple())
MS_LOG(WARNING) << "Invalid tuple_getitem: " << anf_out->fullname_with_scope();
}
}
void DfGraphConvertor::TraceOutput(const AnfNodePtr node) {
AnfNodePtr anf_out = node;
AnfNodePtr pre_node = nullptr;
// trace Parameter node
TraceOutputFromParameter(anf_out);
// then trace cnode
if (!node->isa<CNode>()) {
return;
}
// trace tuple_getitem
while (anf_out->isa<CNode>() && IsPrimitiveCNode(anf_out, prim::kPrimTupleGetItem)) {
pre_node = anf_out;
anf_out = anf_out->cast<CNodePtr>()->input(1);
}
// trace every element of make_tuple
auto c = anf_out->cast<CNodePtr>();
std::string name = "";
if (anf_out->isa<CNode>()) {
name = GetCNodeFuncName(c);
}
if (name == "make_tuple") {
for (unsigned int i = 1; i < c->inputs().size(); i++) {
TraceOutput(c->input(i));
}
} else if (name == "depend") {
if (c->inputs().size() < 3) { // "depend" primitive have 3 inputs
MS_LOG(EXCEPTION) << "length of inputs is " << c->inputs().size() << ", which is less than 3";
}
TraceOutput(c->input(1));
} else if (name == "tuple_getitem") {
TraceOutputFromTupleGetItem(anf_out);
} else {
// add outputs;
auto op = Convert(anf_out);
std::string index;
if (op != nullptr) {
if ((pre_node != nullptr) && IsPrimitiveCNode(pre_node, prim::kPrimTupleGetItem)) {
auto item = out_handle_cache_.find(pre_node.get());
if (item != out_handle_cache_.end()) {
index = item->second.out;
} else {
MS_LOG(WARNING) << "Can't get operater: " << anf_out->fullname_with_scope() << " 's output item";
}
}
MS_LOG(INFO) << "Add graph output: " << anf_out->fullname_with_scope() << ":" << index;
graph_outputs_.emplace_back(make_pair(*op, index));
}
}
}
void DfGraphConvertor::TraceOutputFromParameter(const AnfNodePtr &anf_out) {
if (anf_out->isa<Parameter>()) {
MS_LOG(INFO) << "Add graph output: " << anf_out->fullname_with_scope();
auto it = out_handle_cache_.find(anf_out.get());
if (it != out_handle_cache_.end()) {
// For dataset graph mode, input parameter is converted to a "iterator_get_next:yn" OutHandler.
OutHandler handle = it->second;
auto op = handle.op;
MS_LOG(INFO) << "op name: " << op->GetName() << ", op type: " << op->GetOpType() << ", out_name: " << handle.out;
graph_outputs_.emplace_back(make_pair(*op, handle.out));
} else {
// common parameter case
auto op = Convert(anf_out);
if (op != nullptr) {
MS_LOG(INFO) << "op name: " << op->GetName() << ", op type: " << op->GetOpType();
graph_outputs_.emplace_back(std::make_pair(*op, ""));
}
}
}
}
void SetupDatasetIterGetNextNode(const OperatorPtr &op) {
if (ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) {
DatasetGraphParam param = ConfigManager::GetInstance().dataset_param();
size_t output_num = param.ge_types().size();
MS_LOG(INFO) << "Set iterator_getnext op's output num = " << output_num << ".";
// set iterator_getnext op's output num
shared_ptr<ge::op::GetNext> iter_getnext = std::static_pointer_cast<ge::op::GetNext>(op);
(void)iter_getnext->create_dynamic_output_y(static_cast<unsigned int>(output_num));
for (uint32_t i = 0; i < output_num; i++) {
ge::TensorDesc desc(GeShape(param.shapes()[i]), ge::FORMAT_NCHW, (ge::DataType)param.ge_types()[i]);
// we don't SetRealDimCnt here since GE do not use this output's real-dim
(void)iter_getnext->update_dynamic_output_desc_y((i), desc);
}
}
return;
}
DfGraphConvertor &DfGraphConvertor::BuildGraph() {
SetupDatasetIterGetNextNode(dataset_iter_getnext_);
if (error_ != 0) {
return *this;
}
// update tuple_out_handle_cache_
for (auto it : tuple_out_handle_cache_) {
std::size_t len = it.second->size();
for (std::size_t i = 0; i < len; i++) {
OutHandler handle = (*it.second)[i];
if (handle.op) {
string name = handle.op->GetName();
if (vars_.count(name)) {
OperatorPtr new_op = vars_[name];
if (new_op != nullptr) {
MS_LOG(INFO) << "update tuple_out_handle_cache_ " << name;
(*it.second)[i] = OutHandler(new_op, handle.out);
}
}
}
}
}
// set up dependices
MS_LOG(DEBUG) << "set up dependices";
std::vector<AnfNodePtr> nodes = ::mindspore::TopoSort(anf_graph_->get_return());
for (auto &it : nodes) {
SetNodeInput(it);
SetOpControlInput(it);
UpdateOpDesc(it);
}
if (error_ == 0) {
df_graph_ = make_shared<DfGraph>(anf_graph_->ToString());
} else {
return *this;
}
// set graph input according to the order from anf graph
std::vector<Operator> inputs;
if (ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) {
inputs.push_back(*dataset_iter_getnext_);
} else {
auto params = anf_graph_->parameters();
int index = 0;
for (auto &it : params) {
auto name = std::static_pointer_cast<Parameter>(it)->name();
// the parameters which has not been converted to var
if (vars_.find(name) == vars_.end()) {
auto op = Convert(it);
MS_EXCEPTION_IF_NULL(op);
MS_LOG(INFO) << "add not var input " << it->ToString() << ", index " << index;
if (op == nullptr) {
MS_LOG(ERROR) << "Convert graph failed!";
return *this;
}
UpdateDataOpDesc(it, op);
MS_LOG(INFO) << "add input " << it->ToString() << ", index " << index;
(void)std::static_pointer_cast<Data>(op)->set_attr_index(index++);
inputs.push_back(*op);
} else if (vars_[name] != nullptr) {
MS_LOG(INFO) << "add var input " << it->ToString();
auto op = Convert(it);
MS_EXCEPTION_IF_NULL(op);
inputs.push_back(*op);
}
}
}
// Add const nodes as graph input for some operator work with constant
std::transform(graph_const_inputs_.begin(), graph_const_inputs_.end(), std::back_inserter(inputs),
[](OperatorPtr x) { return *x; });
MS_LOG(INFO) << "set graph input num: " << inputs.size();
(void)df_graph_->SetInputs(inputs);
// set graph output
// set the value of finale return apply node as the output of dataflow graph
MS_LOG(DEBUG) << "set output";
graph_outputs_.clear();
TraceOutput(anf_graph_->get_return()->input(1));
MS_LOG(INFO) << "set graph output num: " << graph_outputs_.size();
(void)df_graph_->SetOutputs(graph_outputs_);
compute_sout_ << "}" << endl;
// For the graph(e.g. eval_subgraph) whose IterNum is 1, donot set NeedIteration flag.
if (ConfigManager::GetInstance().iter_num() > 1) {
df_graph_->SetNeedIteration(true);
}
return *this;
}
void DfGraphConvertor::UpdateDataOpDesc(const AnfNodePtr &it, const OperatorPtr &op) const {
auto node = std::static_pointer_cast<AnfNode>(it);
if (node == nullptr) {
MS_LOG(ERROR) << "Update data op descriptor failed! Invalid node.";
return;
}
auto normal_shape_ptr = dyn_cast<abstract::Shape>(node->Shape());
vector<int> shape;
if (normal_shape_ptr == nullptr) {
MS_LOG(INFO) << "Invalid shape to update data op descriptor.";
return;
}
shape = normal_shape_ptr->shape();
if (node->Type() == nullptr) {
MS_LOG(INFO) << "Invalid type to update data op descriptor.";
return;
}
TypeId me_type = node->Type()->type_id();
if (kObjectTypeTensorType == me_type) {
me_type = dyn_cast<TensorType>(node->Type())->element()->type_id();
}
std::ostringstream buf;
buf << "[" << shape << "]";
MS_LOG(INFO) << "input shape is " << buf.str() << ", type is " << me_type;
auto desc = TransformUtil::GetGeTensorDesc(shape, me_type, "NCHW");
if (desc == nullptr) {
MS_LOG(ERROR) << "Update data op descriptor failed! TensorDesc is null.";
} else {
(void)std::static_pointer_cast<Data>(op)->update_input_desc_data(*desc);
(void)std::static_pointer_cast<Data>(op)->update_output_desc_out(*desc);
}
}
DfGraphPtr DfGraphConvertor::GetComputeGraph() { return df_graph_; }
DfGraphPtr DfGraphConvertor::GetInitGraph() { return init_graph_; }
DfGraphPtr DfGraphConvertor::GetSaveCheckpointGraph() { return save_ckp_graph_; }
DfGraphPtr DfGraphConvertor::GetBroadcastGraph() { return broadcast_graph_; }
void DfGraphConvertor::SetOpControlInput(const AnfNodePtr node) {
if (control_depend_cache_.find(node.get()) == control_depend_cache_.end()) {
return;
}
std::vector<ControlEdge> control_edges = control_depend_cache_[node.get()];
if ((control_edges.empty())) {
MS_LOG(ERROR) << "Get control depend node's src or dest operator failed";
return;
}
for (auto &item : control_edges) {
(void)item.dest_op->AddControlInput(*item.src_op);
}
}
const std::vector<std::string> trans_var_list = {string(kNameAssign), string(kNameAssignAdd), string(kNameAssignSub)};
void DfGraphConvertor::SetOpInput(const OpAdapterPtr &adpt, const CNodePtr &node) {
OperatorPtr src = Convert(node);
auto &inputs = node->inputs();
for (size_t i = 1; i < inputs.size(); i++) {
auto pred = inputs[i];
while (pred->isa<CNode>() && GetCNodeFuncName(pred->cast<CNodePtr>()) == "depend") {
pred = pred->cast<CNodePtr>()->input(1);
}
// skip the None input
if (IsValueNode<None>(pred)) {
continue;
}
// transform "Const" op to "Variable" op when the next node is "Assign" op.
std::string c_name = GetCNodeFuncName(node);
auto pos = std::find(trans_var_list.begin(), trans_var_list.end(), c_name);
if (!training_ && pos != trans_var_list.end() && pred->isa<Parameter>()) {
std::string name = std::static_pointer_cast<Parameter>(pred)->name();
auto op_itor = op_cache_.find(pred.get());
if (op_itor == op_cache_.end()) {
MS_LOG(EXCEPTION) << "Can not find op for node " << pred->ToString() << ".";
}
if (op_itor->second != nullptr &&
(op_itor->second->GetOpType() == "Constant" || op_itor->second->GetOpType() == "Const") &&
vars_.find(name) != vars_.end()) {
auto variable = std::make_shared<Variable>(name);
auto desc = vars_[name]->GetOutputDesc("y");
(void)variable->update_output_desc_y(desc);
MS_LOG(DEBUG) << "Trans to variable, var = " << variable->GetName() << ".";
op_itor->second = variable; // replace parameter with variable
vars_[name] = variable;
}
}
// find in out_hadnle_cache_ first
auto it = out_handle_cache_.find(pred.get());
if (it != out_handle_cache_.end()) {
int ret = adpt->setInput(src, SizeToInt(i), it->second);
if (ret == 0) {
if (pred->isa<CNode>() && GetCNodeFuncName(pred->cast<CNodePtr>()) == "tuple_getitem") {
compute_sout_ << op_draw_name_[pred->cast<CNodePtr>()->input(1).get()] << " -> " << op_draw_name_[node.get()]
<< ":" << i << endl;
} else if (pred->isa<Parameter>()) {
compute_sout_ << op_draw_name_[pred.get()] << " -> " << op_draw_name_[node.get()] << ":" << i << endl;
} else {
// don't draw anything.
MS_LOG(INFO) << "DRAW_GE_GRAPH: Shouldn't have this case.";
}
AddGraphConstInput(it->second.op);
}
} else if (tuple_out_handle_cache_.find(pred.get()) != tuple_out_handle_cache_.end()) {
std::shared_ptr<std::vector<OutHandler>> handler_vec = tuple_out_handle_cache_[pred.get()];
int ret = adpt->setInput(src, SizeToInt(i), handler_vec);
if ((ret == 0) && pred->isa<CNode>() && (pred->cast<CNodePtr>()->inputs().size() == handler_vec->size() + 1)) {
for (unsigned int j = 0; j < handler_vec->size(); j++) {
compute_sout_ << op_draw_name_[pred->cast<CNodePtr>()->input(j + 1).get()] << " -> "
<< op_draw_name_[node.get()] << ":" << i << endl;
AddGraphConstInput(handler_vec->at(j).op);
}
} else {
MS_LOG(WARNING) << "Convert tuple node setInput failed : " << node->ToString();
}
} else {
auto op = Convert(pred);
int ret = adpt->setInput(src, SizeToInt(i), op);
if (ret == 0) {
compute_sout_ << op_draw_name_[pred.get()] << " -> " << op_draw_name_[node.get()] << ":" << i << endl;
AddGraphConstInput(op);
}
}
}
}
void DfGraphConvertor::AddGraphConstInput(const OperatorPtr &op) {
if (op->GetOpType() == "Constant") {
graph_const_inputs_.push_back(op);
}
}
void DfGraphConvertor::SetNodeInput(const AnfNodePtr node) {
if (!node->isa<CNode>()) {
return;
}
if (op_cache_.find(node.get()) == op_cache_.end()) {
return;
}
auto cnode = node->cast<CNodePtr>();
OpAdapterPtr adpt = FindAdapter(cnode, training_);
if (adpt == nullptr) {
error_ = NOT_FOUND;
return;
}
// get Operator from op_cache_, use adapter to set Inputs
DfGraphConvertor::SetOpInput(adpt, cnode);
}
// Update GE op's shape and type info
void DfGraphConvertor::UpdateOpDesc(const AnfNodePtr node) {
if (nullptr == node || !node->isa<CNode>()) {
return;
}
if (op_cache_.find(node.get()) == op_cache_.end()) {
return;
}
OpAdapterPtr adpt = FindAdapter(node, training_);
if (adpt == nullptr) {
error_ = NOT_FOUND;
return;
}
// get Operator from op_cache_
OperatorPtr op = Convert(node);
adpt->updateOutputDesc(op, node->Shape(), node->Type(), node);
}
OperatorPtr DfGraphConvertor::Convert(const AnfNodePtr node) {
if (node == nullptr) {
MS_LOG(ERROR) << "node is nullptr";
error_ = NOT_FOUND;
return nullptr;
}
// find in cache
if (op_cache_.count(node.get())) {
return op_cache_[node.get()];
}
// do not convert primitive node
if (IsValueNode<Primitive>(node)) {
return nullptr;
}
// convert a new one
if (node->isa<CNode>()) {
return ConvertCNode(node->cast<CNodePtr>());
}
if (node->isa<Parameter>()) {
return ConvertParameter(node);
}
if (node->isa<ValueNode>()) {
return ConvertValueNode(node->cast<ValueNodePtr>());
}
MS_LOG(ERROR) << "Invalide AnfNode";
error_ = INVALID_ARGUMENT;
return nullptr;
}
void DfGraphConvertor::ConvertMakeTuple(const CNodePtr node) {
std::shared_ptr<std::vector<OutHandler>> tuple_items = std::make_shared<std::vector<OutHandler>>();
// convert each tuple item to a OutHandler
for (size_t i = 1; i < node->inputs().size(); i++) {
AnfNodePtr item = node->input(i);
OperatorPtr op = Convert(item);
if (op != nullptr) {
tuple_items->emplace_back(OutHandler(op, ""));
} else if (out_handle_cache_.find(item.get()) != out_handle_cache_.end()) {
tuple_items->push_back(out_handle_cache_[item.get()]);
} else {
MS_LOG(WARNING) << "This anf node is not supported as a tuple item : " << item->ToString();
return;
}
}
tuple_out_handle_cache_[node.get()] = tuple_items;
}
AnfNodePtr DfGraphConvertor::TraceTupleGetItem(const CNodePtr &node, unsigned int *index) {
const int TUPLE_GET_ITEM_INDEX = 2;
if (node->inputs().size() < 3) { // "tuple_getitem" primitive must have 3 inputs
MS_LOG(EXCEPTION) << "length of inputs of TupleGetItem is less than 3";
}
auto index_node = node->inputs()[TUPLE_GET_ITEM_INDEX];
if (!index_node->isa<ValueNode>()) {
error_ = INVALID_ARGUMENT;
MS_LOG(EXCEPTION) << "can't convert get item with non-constant index";
}
*index = IntToUint(GetValue<int>(GetValueNode(index_node)));
return node->inputs()[1];
}
AnfNodePtr DfGraphConvertor::TraceDepend(const CNodePtr &node) {
auto cnode = node->cast<CNodePtr>();
if (cnode->inputs().size() < 3) { // "depend" primitive have 3 inputs
MS_LOG(EXCEPTION) << "length of inputs of depend is less than 3";
}
return cnode->inputs()[1];
}
AnfNodePtr DfGraphConvertor::TraceMakeTuple(const CNodePtr &node, unsigned int index) {
if (index + 1 >= node->inputs().size()) {
MS_LOG(EXCEPTION) << "length of make_tuple is less than index: " << index;
}
return node->inputs()[index + 1];
}
OutHandler DfGraphConvertor::GetHandler(const AnfNodePtr &node, const std::stack<unsigned int> &index_stack,
AnfNode *const draw_index) {
if (node == nullptr) {
MS_LOG(ERROR) << "Get nullptr while trace real op";
return OutHandler(nullptr, "");
}
std::ostringstream ss;
ss << "op" << node.get();
if (index_stack.empty()) {
op_draw_name_[draw_index] = ss.str();
return OutHandler(Convert(node), "");
} else {
OpAdapterPtr adpt = FindAdapter(node, training_);
if (nullptr == adpt) {
MS_LOG(ERROR) << "Can not get node output as adpt is nullptr!";
error_ = NOT_FOUND;
return OutHandler(nullptr, "");
}
OperatorPtr op = Convert(node);
if (op == nullptr) {
error_ = NOT_FOUND;
MS_LOG(ERROR) << "Can not convert node for trace real op";
return OutHandler(nullptr, "");
}
op_draw_name_[draw_index] = ss.str();
return adpt->getOutput(Convert(node), UintToInt(index_stack.top()));
}
}
// get the real operator through maketuple tuple_getitem depend
OutHandler DfGraphConvertor::TraceRealOp(AnfNodePtr node) {
bool flag = IsPrimitiveCNode(node, prim::kPrimTupleGetItem) || IsPrimitiveCNode(node, prim::kPrimMakeTuple) ||
IsPrimitiveCNode(node, prim::kPrimDepend);
std::stack<unsigned int> index_stack;
auto draw_index = node.get();
while (flag) {
flag = false;
if (IsPrimitiveCNode(node, prim::kPrimTupleGetItem)) {
unsigned int index;
node = TraceTupleGetItem(node->cast<CNodePtr>(), &index);
index_stack.push(index);
flag = true;
} else if (IsPrimitiveCNode(node, prim::kPrimMakeTuple)) {
if (index_stack.empty()) {
MS_LOG(ERROR) << "TraceRealOp find a make_tuple node";
return OutHandler(nullptr, "");
} else {
node = TraceMakeTuple(node->cast<CNodePtr>(), index_stack.top());
index_stack.pop();
flag = true;
}
} else if (IsPrimitiveCNode(node, prim::kPrimDepend)) {
node = TraceDepend(node->cast<CNodePtr>());
flag = true;
}
}
return GetHandler(node, index_stack, draw_index);
}
void DfGraphConvertor::ConvertTupleGetItem(const CNodePtr node) {
auto handle = TraceRealOp(node);
if (handle.op == nullptr) {
MS_LOG(ERROR) << "Failed to trace tuple get item";
return;
}
out_handle_cache_[node.get()] = handle;
}
// Get the real op for tuple_getitem through make tuple, or depend
AnfNodePtr DfGraphConvertor::GetRealOpNode(AnfNodePtr node) {
const int TUPLE_GET_ITEM_INDEX = 2;
if (IsPrimitiveCNode(node, prim::kPrimTupleGetItem)) {
auto node_inputs = node->cast<CNodePtr>()->inputs();
if (node_inputs.size() != 3) { // "tuple_getitem" primitive must have 3 inputs
MS_LOG(ERROR) << "tuple get item node not correct!";
error_ = FAILED;
return node;
}
MS_EXCEPTION_IF_NULL(node_inputs[TUPLE_GET_ITEM_INDEX]);
if (!node_inputs[TUPLE_GET_ITEM_INDEX]->isa<ValueNode>()) {
error_ = INVALID_ARGUMENT;
MS_LOG(EXCEPTION) << "can't convert get item with non-constant index";
}
auto value_ptr = GetValueNode(node_inputs[TUPLE_GET_ITEM_INDEX])->cast<Int32ImmPtr>();
if (value_ptr == nullptr) {
MS_LOG(ERROR) << "Can not convert get item as value is nullptr!";
error_ = FAILED;
return node;
}
int index = value_ptr->value();
// make_tuple apply inputs:make_tuple, [tuple_items,]
if (IsPrimitiveCNode(node_inputs[1], prim::kPrimMakeTuple)) {
auto tuple_inputs = node->cast<CNodePtr>()->inputs();
if (tuple_inputs.size() < IntToSize(index + 1)) {
MS_LOG(ERROR) << "make tuple input items node not correct! size:" << tuple_inputs.size()
<< ", item index:" << index;
error_ = FAILED;
return node;
}
return GetRealOpNode(tuple_inputs[IntToSize(index + 1)]);
}
return GetRealOpNode(node_inputs[1]);
}
// depend apply inputs: depend,output,depended_node
if (IsPrimitiveCNode(node, prim::kPrimDepend)) {
auto depend_inputs = node->cast<CNodePtr>()->inputs();
if (depend_inputs.size() != 3) { // "depend" primitive have 3 inputs
MS_LOG(ERROR) << "depend input items not correct";
error_ = FAILED;
return node;
}
return GetRealOpNode(depend_inputs[1]);
}
return node;
}
// convert the anf node to corresponding operator list
std::vector<OperatorPtr> DfGraphConvertor::ConvertDependNode(const AnfNodePtr node) {
if (IsPrimitiveCNode(node, prim::kPrimMakeTuple)) {
std::vector<OperatorPtr> op_lists;
auto node_inputs = node->cast<CNodePtr>()->inputs();
for (size_t index = 1; index < node_inputs.size(); index++) {
auto op = Convert(GetRealOpNode(node_inputs[index]));
if (op == nullptr) {
MS_LOG(ERROR) << "Convert control depend node to operator failed";
error_ = FAILED;
return std::vector<OperatorPtr>({});
}
op_lists.push_back(op);
}
return op_lists;
}
auto op = Convert(GetRealOpNode(node));
if (op == nullptr) {
MS_LOG(ERROR) << "Convert control depend node to operator failed";
error_ = FAILED;
return std::vector<OperatorPtr>({});
}
return std::vector<OperatorPtr>({op});
}
// get the anf node list for depend
std::vector<AnfNodePtr> DfGraphConvertor::GetDependNodes(const AnfNodePtr &node) {
std::vector<AnfNodePtr> nodes;
// for make tuple, should control depend on the tuple items
if (IsPrimitiveCNode(node, prim::kPrimMakeTuple)) {
auto node_inputs = node->cast<CNodePtr>()->inputs();
for (size_t index = 1; index < node_inputs.size(); index++) {
nodes.push_back(GetRealOpNode(node_inputs[index]));
}
return nodes;
}
// for parameter ,find the apply that used the parameter as the control depended node
if (node->isa<Parameter>()) {
auto uses = node->func_graph()->manager()->node_users()[node];
for (auto &use : uses) {
auto use_node = use.first;
if ((use_node->isa<CNode>()) && (!IsPrimitiveCNode(use_node, prim::kPrimControlDepend))) {
nodes.push_back(GetRealOpNode(use_node));
}
}
return nodes;
}
nodes.push_back(GetRealOpNode(node));
return nodes;
}
void DfGraphConvertor::DrawControlDepend(const AnfNodePtr &src_node, const AnfNodePtr &dest_node) {
#ifdef DRAW_GE_GRAPH
auto src_depend_nodes = GetDependNodes(src_node);
auto dst_depend_nodes = GetDependNodes(dest_node);
if (src_depend_nodes.size() == 1 && dst_depend_nodes.size() > 1) {
for (auto &item : dst_depend_nodes) {
compute_sout_ << op_draw_name_[src_depend_nodes[0].get()] << " -> " << op_draw_name_[item.get()]
<< "[style=\"dotted\"]" << endl;
}
} else if (src_depend_nodes.size() > 1 && dst_depend_nodes.size() == 1) {
for (auto &item : src_depend_nodes) {
compute_sout_ << op_draw_name_[item.get()] << " -> " << op_draw_name_[dst_depend_nodes[0].get()]
<< "[style=\"dotted\"]" << endl;
}
} else if (src_depend_nodes.size() == 1 && dst_depend_nodes.size() == 1) {
compute_sout_ << op_draw_name_[src_depend_nodes[0].get()] << " -> " << op_draw_name_[dst_depend_nodes[0].get()]
<< "[style=\"dotted\"]" << endl;
}
#endif
}
void DfGraphConvertor::GetDependOnParameterUse(const CNodePtr &node, const AnfNodePtr &src_node,
const AnfNodePtr &dest_node,
const std::shared_ptr<std::vector<OperatorPtr>> &src_ops_list,
const std::shared_ptr<std::vector<OperatorPtr>> &dst_ops_list) {
if (src_node->isa<Parameter>()) {
auto uses = node->func_graph()->manager()->node_users()[src_node];
for (auto &use : uses) {
auto use_node = use.first;
if ((use_node->isa<CNode>()) && (!IsPrimitiveCNode(use_node, prim::kPrimControlDepend)) &&
(!IsPrimitiveCNode(use_node, prim::kPrimMakeTuple))) {
auto converted_list = ConvertDependNode(use_node);
src_ops_list->insert(src_ops_list->end(), converted_list.begin(), converted_list.end());
}
}
}
if (dest_node->isa<Parameter>()) {
auto uses = node->func_graph()->manager()->node_users()[dest_node];
for (auto &use : uses) {
auto use_node = use.first;
if ((use_node->isa<CNode>()) && (!IsPrimitiveCNode(use_node, prim::kPrimControlDepend)) &&
(!IsPrimitiveCNode(use_node, prim::kPrimMakeTuple))) {
auto converted_list = ConvertDependNode(use_node);
dst_ops_list->insert(dst_ops_list->end(), converted_list.begin(), converted_list.end());
}
}
}
}
bool DfGraphConvertor::GetControlDependList(const CNodePtr &node,
const std::shared_ptr<std::vector<OperatorPtr>> &src_ops_list,
const std::shared_ptr<std::vector<OperatorPtr>> &dst_ops_list) {
const int CONTROL_DEPEND_INDEX = 0;
const int SRC_NODE_INDEX = 1;
const int DEST_NODE_INDEX = 2;
const int DEPEND_MODE_NORMAL_USE = 0;
const int DEPEND_MODE_ON_PARAMETER_USE = 1;
auto node_inputs = node->inputs();
if (node_inputs.size() <= DEST_NODE_INDEX) {
MS_LOG(WARNING) << "Control depend node input size error";
return false;
}
auto src_node = node_inputs[SRC_NODE_INDEX];
auto dest_node = node_inputs[DEST_NODE_INDEX];
if ((src_node == nullptr) || (dest_node == nullptr)) {
MS_LOG(ERROR) << "Control depend node miss src or dest node";
error_ = FAILED;
return false;
}
AnfNodePtr fn = node_inputs[CONTROL_DEPEND_INDEX];
PrimitivePtr prim_ptr = GetValueNode<PrimitivePtr>(fn);
ValuePtr mode_ptr = prim_ptr->GetAttr("depend_mode");
int depend_mode = DEPEND_MODE_NORMAL_USE;
if (mode_ptr != nullptr) {
auto mode_int = mode_ptr->cast<Int32ImmPtr>();
MS_EXCEPTION_IF_NULL(mode_int);
depend_mode = mode_int->value();
MS_LOG(DEBUG) << "depend_mode = " << depend_mode;
}
if (depend_mode == DEPEND_MODE_ON_PARAMETER_USE) {
GetDependOnParameterUse(node, src_node, dest_node, src_ops_list, dst_ops_list);
}
if (src_node->isa<CNode>()) {
auto converted_list = ConvertDependNode(src_node);
src_ops_list->insert(src_ops_list->end(), converted_list.begin(), converted_list.end());
}
if (dest_node->isa<CNode>()) {
auto converted_list = ConvertDependNode(dest_node);
dst_ops_list->insert(dst_ops_list->end(), converted_list.begin(), converted_list.end());
}
if (src_ops_list->empty() || dst_ops_list->empty()) {
MS_LOG(WARNING) << "Control depend node's src or dest node is not a apply node, ignore it";
error_ = SUCCESS;
}
return true;
}
void DfGraphConvertor::ConvertControlDependNode(const CNodePtr node) {
const int SRC_NODE_INDEX = 1;
const int DEST_NODE_INDEX = 2;
if (control_depend_cache_.find(node.get()) != control_depend_cache_.end()) {
return;
}
auto node_inputs = node->inputs();
if (node_inputs.size() <= DEST_NODE_INDEX) {
MS_LOG(WARNING) << "Control depend node input size error";
return;
}
auto src_node = node_inputs[SRC_NODE_INDEX];
auto dest_node = node_inputs[DEST_NODE_INDEX];
if ((src_node == nullptr) || (dest_node == nullptr)) {
MS_LOG(ERROR) << "Control depend node miss src or dest node";
error_ = FAILED;
return;
}
std::shared_ptr<std::vector<OperatorPtr>> src_ops_list = std::make_shared<std::vector<OperatorPtr>>();
std::shared_ptr<std::vector<OperatorPtr>> dst_ops_list = std::make_shared<std::vector<OperatorPtr>>();
if (!GetControlDependList(node, src_ops_list, dst_ops_list)) {
MS_LOG(ERROR) << "Get depend list failed";
error_ = FAILED;
return;
}
std::vector<ControlEdge> control_edges;
if (src_ops_list->size() == 1 && dst_ops_list->size() > 1) {
(void)std::transform(dst_ops_list->begin(), dst_ops_list->end(), std::back_inserter(control_edges),
[src_ops_list](const OperatorPtr &op) -> ControlEdge {
return {(*src_ops_list)[0], op};
});
} else if (src_ops_list->size() > 1 && dst_ops_list->size() == 1) {
(void)std::transform(src_ops_list->begin(), src_ops_list->end(), std::back_inserter(control_edges),
[dst_ops_list](const OperatorPtr &op) -> ControlEdge {
return {op, (*dst_ops_list)[0]};
});
} else if (src_ops_list->size() == 1 && dst_ops_list->size() == 1) {
control_edges.push_back({(*src_ops_list)[0], (*dst_ops_list)[0]});
} else {
MS_LOG(ERROR) << "Convert control depend node to operator failed, depend src:" << src_ops_list->size()
<< " -> dst:" << dst_ops_list->size();
error_ = FAILED;
return;
}
control_depend_cache_[node.get()] = control_edges;
#ifdef DRAW_GE_GRAPH
DrawControlDepend(src_node, dest_node);
#endif
}
bool DfGraphConvertor::CheckCNode(const std::string &name, const CNodePtr node) {
// ignore apply node of return
if (name == "return" || name == "depend") {
return false;
}
// make_tuple is used for a dynamic_input, convert it to a vector of OutHandlers
if (name == "make_tuple") {
ConvertMakeTuple(node);
return false;
}
// As for nodes with multi outputs, convert tuple_getitem to OutHandle
if (name == "tuple_getitem") {
ConvertTupleGetItem(node);
return false;
}
if (name == "ControlDepend") {
ConvertControlDependNode(node);
return false;
}
return true;
}
OperatorPtr DfGraphConvertor::ConvertCNode(const CNodePtr node) {
std::string name = GetCNodeFuncName(node);
if (!CheckCNode(name, node)) {
return nullptr;
}
// get corresponding OpAdapter
OpAdapterPtr adpt = FindAdapter(node, training_);
if (adpt == nullptr) {
error_ = NOT_FOUND;
return nullptr;
}
// get operator
OperatorPtr op = nullptr;
auto it_op = op_cache_.find(node.get());
if (it_op != op_cache_.end()) {
op = it_op->second;
} else {
op = adpt->generate(node);
}
// set attribute for primitive
(void)adpt->setAttr(op, node);
// add into cache
(void)op_cache_.insert(std::make_pair(node.get(), op));
DrawCNode(node, adpt);
return op_cache_[node.get()];
}
OperatorPtr DfGraphConvertor::ConvertParameter(const AnfNodePtr node) {
// convert Parameter in ANF to variable in DataFlow
auto op = FindAdapter(node, training_)->generate(node);
op_cache_[node.get()] = op;
// build index for parameter using name
std::string name = std::static_pointer_cast<Parameter>(node)->name();
params_[name] = node;
std::ostringstream ss;
ss << "op" << node.get();
op_draw_name_[node.get()] = ss.str();
compute_sout_ << ss.str() << "[shape=octagon, label=\"" << name << "\"]" << endl;
return op_cache_[node.get()];
}
Status DfGraphConvertor::TryConvertValueNodeToMultiConst(const ValueNodePtr node) {
MS_EXCEPTION_IF_NULL(node);
ValuePtr value = node->value();
MS_EXCEPTION_IF_NULL(value);
if (!value->isa<ValueList>() && !value->isa<ValueTuple>()) {
return FAILED;
}
auto vec = value->isa<ValueTuple>() ? value->cast<ValueTuplePtr>()->value() : value->cast<ValueListPtr>()->value();
if (vec.empty()) {
return FAILED;
}
std::shared_ptr<std::vector<OutHandler>> tuple_items = std::make_shared<std::vector<OutHandler>>();
for (size_t i = 0; i < vec.size(); i++) {
MS_EXCEPTION_IF_NULL(vec[i]);
if (vec[i]->isa<MeTensor>()) {
GeTensorPtr ge_tensor = transform::TransformUtil::ConvertTensor(vec[i]->cast<MeTensorPtr>(), kOpFormat_NCHW);
auto const_op = std::make_shared<Constant>(node->fullname_with_scope() + "/const/inputs/" + std::to_string(i));
(void)const_op->set_attr_value(*ge_tensor);
(void)const_op->update_output_desc_y(ge_tensor->GetTensorDesc());
tuple_items->emplace_back(OutHandler(const_op, ""));
} else {
return FAILED;
}
}
if (tuple_items->empty()) {
return FAILED;
}
tuple_out_handle_cache_[node.get()] = tuple_items;
return SUCCESS;
}
OperatorPtr DfGraphConvertor::ConvertValueNode(const ValueNodePtr node) {
// convert valuenode in ANF to Const in DataFlow
// find paramerte referenced by SymbolicKeyInstance of valuenode
std::ostringstream ss;
ss << "op" << node.get();
op_draw_name_[node.get()] = ss.str();
compute_sout_ << ss.str() << "[label= \"" << node->value()->ToString() << "\" shape=ellipse]" << endl;
if (TryConvertValueNodeToMultiConst(node) == SUCCESS) {
MS_LOG(INFO) << "Convert value node to multi Constant OP success";
return nullptr;
}
OpAdapterPtr adpt = FindAdapter(node, training_);
if (adpt == nullptr) {
error_ = NOT_FOUND;
return nullptr;
}
auto op = adpt->generate(node);
// set const's attrs
if (adpt->setAttr(op, "value", node->value()) != 0) {
MS_LOG(WARNING) << "set attr value for const failed";
}
#if (defined ENABLE_GE)
auto const_op = std::static_pointer_cast<Constant>(op);
if (const_op == nullptr) {
MS_LOG(ERROR) << "Get Constant operator failed";
return nullptr;
}
auto ge_tensor = const_op->get_attr_value();
auto ge_desc = ge_tensor.GetTensorDesc();
(void)const_op->update_output_desc_y(ge_desc);
#endif
op_cache_[node.get()] = op;
return op_cache_[node.get()];
}
void DfGraphConvertor::DrawCNode(const CNodePtr node, const OpAdapterPtr adpt) {
if (nullptr == adpt || nullptr == node) {
MS_LOG(ERROR) << "Failed to draw apply node as adpt or node is nullptr!";
return;
}
std::ostringstream ss;
ss << "op" << node.get();
op_draw_name_[node.get()] = ss.str();
compute_sout_ << ss.str() << "[label=<";
compute_sout_ << "<table border='1' cellborder='1'>" << endl;
auto input_map = adpt->getInputMap();
auto dyn_input_map = adpt->getDynInputMap();
if (input_map.size() + dyn_input_map.size() > 0) {
compute_sout_ << "<tr>";
for (auto &it : input_map) {
compute_sout_ << "<td port='" << it.first << "'>" << it.second.name << "</td>";
}
for (auto &it : dyn_input_map) {
compute_sout_ << "<td port='" << it.first << "'>" << it.second.name << "</td>";
}
compute_sout_ << "</tr>" << endl;
}
compute_sout_ << "<tr><td colspan=\"" << (input_map.size() + dyn_input_map.size()) << "\">\"" << node->ToString()
<< ":" << GetCNodeFuncName(node) << "\"</td></tr>" << endl;
// print attrs' values
auto atts = adpt->GetAttrsFromDrawGraph();
for (auto &it : atts) {
compute_sout_ << "<tr><td colspan=\"" << (input_map.size() + dyn_input_map.size()) << "\">\"" << it
<< "\"</td></tr>";
}
adpt->clearAttrVect();
compute_sout_ << "</table>> shape=plaintext]" << endl;
}
} // namespace transform
} // namespace mindspore