You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/nlp/lstm/export.py

74 lines
3.2 KiB

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into mindir model#################
python export.py
"""
import argparse
import os
import numpy as np
from mindspore import Tensor, context
from mindspore import export, load_checkpoint, load_param_into_net
from src.config import lstm_cfg, lstm_cfg_ascend
from src.lstm import SentimentNet
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MindSpore LSTM Exporter')
parser.add_argument('--preprocess_path', type=str, default='./preprocess',
help='path where the pre-process data is stored.')
parser.add_argument('--ckpt_file', type=str, required=True, help='lstm ckpt file.')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--file_name", type=str, default="lstm", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['GPU', 'CPU', 'Ascend'],
help='the target device to run, support "GPU", "CPU". Default: "Ascend".')
args = parser.parse_args()
context.set_context(
mode=context.GRAPH_MODE,
save_graphs=False,
device_target=args.device_target,
device_id=args.device_id)
if args.device_target == 'Ascend':
cfg = lstm_cfg_ascend
else:
cfg = lstm_cfg
embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32)
if args.device_target == 'Ascend':
pad_num = int(np.ceil(cfg.embed_size / 16) * 16 - cfg.embed_size)
if pad_num > 0:
embedding_table = np.pad(embedding_table, [(0, 0), (0, pad_num)], 'constant')
cfg.embed_size = int(np.ceil(cfg.embed_size / 16) * 16)
network = SentimentNet(vocab_size=embedding_table.shape[0],
embed_size=cfg.embed_size,
num_hiddens=cfg.num_hiddens,
num_layers=cfg.num_layers,
bidirectional=cfg.bidirectional,
num_classes=cfg.num_classes,
weight=Tensor(embedding_table),
batch_size=cfg.batch_size)
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(network, param_dict)
input_arr = Tensor(np.random.uniform(0.0, 1e5, size=[cfg.batch_size, 500]).astype(np.int32))
export(network, input_arr, file_name=args.file_name, file_format=args.file_format)