You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/rl/dqn/eval.py

68 lines
2.3 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation for DQN"""
import argparse
import gym
from mindspore import context
from mindspore.common import set_seed
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.config import config_dqn as cfg
from src.agent import Agent
parser = argparse.ArgumentParser(description='MindSpore dqn Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--ckpt_path', type=str, default=None, help='if is test, must provide\
path where the trained ckpt file')
args = parser.parse_args()
set_seed(1)
if __name__ == "__main__":
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
env = gym.make('CartPole-v1')
cfg.state_space_dim = env.observation_space.shape[0]
cfg.action_space_dim = env.action_space.n
agent = Agent(**cfg)
# load checkpoint
if args.ckpt_path:
param_dict = load_checkpoint(args.ckpt_path)
not_load_param = load_param_into_net(agent.policy_net, param_dict)
if not_load_param:
raise ValueError("Load param into net fail!")
score = 0
agent.load_dict()
for episode in range(50):
s0 = env.reset()
total_reward = 1
while True:
a0 = agent.eval_act(s0)
s1, r1, done, _ = env.step(a0)
if done:
r1 = -1
if done:
break
total_reward += r1
s0 = s1
score += total_reward
print("episode", episode, "total_reward", total_reward)
print("mean_reward", score/50)