You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/data/dataset/testPyfuncMap/pyfuncmap.py

143 lines
4.5 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import mindspore.dataset as ds
DATA_DIR = ["./data.data"]
SCHEMA_DIR = "./schema.json"
def test_case_0():
"""
Test PyFunc
"""
print("Test 1-1 PyFunc : lambda x : x + x")
col = "col0"
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(operations=(lambda x: x + x), input_columns=col, output_columns="out")
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
print(data["out"])
print("************** Output Tensor *****************")
def test_case_1():
"""
Test PyFunc
"""
print("Test 1-n PyFunc : (lambda x : (x , x + x)) ")
col = "col0"
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(operations=(lambda x: (x, x + x)), input_columns=col, output_columns=["out0", "out1"])
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
print("out0")
print(data["out0"])
print("out1")
print(data["out1"])
print("************** Output Tensor *****************")
def test_case_2():
"""
Test PyFunc
"""
print("Test n-1 PyFunc : (lambda x, y : x + y) ")
col = ["col0", "col1"]
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(operations=(lambda x, y: x + y), input_columns=col, output_columns="out")
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
print(data["out"])
print("************** Output Tensor *****************")
def test_case_3():
"""
Test PyFunc
"""
print("Test n-m PyFunc : (lambda x, y : (x , x + 1, x + y)")
col = ["col0", "col1"]
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(operations=(lambda x, y: (x, x + y, x + x + y)), input_columns=col,
output_columns=["out0", "out1", "out2"])
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
print("out0")
print(data["out0"])
print("out1")
print(data["out1"])
print("out2")
print(data["out2"])
print("************** Output Tensor *****************")
def test_case_4():
"""
Test PyFunc
"""
print("Test Parallel n-m PyFunc : (lambda x, y : (x , x + 1, x + y)")
col = ["col0", "col1"]
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(operations=(lambda x, y: (x, x + y, x + x + y)), input_columns=col,
output_columns=["out0", "out1", "out2"], num_parallel_workers=4)
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
print("out0")
print(data["out0"])
print("out1")
print(data["out1"])
print("out2")
print(data["out2"])
print("************** Output Tensor *****************")
if __name__ == "__main__":
test_case_0()
# test_case_1()
# test_case_2()
# test_case_3()
# test_case_4()