You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/ops/test_tensor_slice.py

237 lines
7.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_tensor_slice """
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import context
from mindspore import dtype as mstype
from mindspore.nn import Cell
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
class NetWorkSlicePositive(Cell):
def __init__(self):
super(NetWorkSlicePositive, self).__init__()
self.tensor_ret0 = Tensor(np.ones([1, 2, 2], np.int32))
self.tensor_ret1 = Tensor(np.ones([4, 7, 4], np.int32))
self.tensor_ret2 = Tensor(np.ones([6, 8, 10], np.int32))
self.tensor_ret3 = Tensor(np.ones([3, 8, 10], np.int32))
def construct(self, tensor):
ret0 = tensor[3:4:3, 1:5:2, 3:6:2] + self.tensor_ret0
ret1 = tensor[-6:4:1, 7:-8:-1, ::3] + self.tensor_ret1
ret2 = tensor[::, ::, ::] + self.tensor_ret2
ret3 = tensor[::2] + self.tensor_ret3
return ret0, ret1, ret2, ret3
class NetWorkReduceDimension(Cell):
def __init__(self):
super(NetWorkReduceDimension, self).__init__()
self.tensor_ret0 = Tensor(np.ones([2, 4, 1], np.int32))
self.tensor_ret1 = Tensor(np.ones([3, 4], np.int32))
self.tensor_ret2 = Tensor(np.ones([6, 8], np.int32))
self.tensor_ret3 = Tensor(np.array(8, np.int32))
self.tensor_ret4 = Tensor(np.ones([8, 10], np.int32))
def construct(self, tensor):
ret0 = tensor[0:6:3, 1:5:1, 3:5:2] + self.tensor_ret0
ret1 = tensor[::2, 1, ::3] + self.tensor_ret1
ret2 = tensor[::, ::, 0] + self.tensor_ret2
ret3 = tensor[3, 2, 5] + self.tensor_ret3
ret4 = tensor[1] + self.tensor_ret4
return ret0, ret1, ret2, ret3, ret4
class NetWorkStepNegative(Cell):
def __init__(self):
super(NetWorkStepNegative, self).__init__()
self.tensor_ret = Tensor(np.ones([6, 5, 10], np.int32))
def construct(self, tensor):
ret = tensor[::1, -5::, ::-1] + self.tensor_ret
return ret
class NetWorkReduceToScalar(Cell):
def __init__(self):
super(NetWorkReduceToScalar, self).__init__()
self.tensor_ret = Tensor(np.array(9, np.int32))
def construct(self, tensor):
ret = tensor[2, 3, 4] + self.tensor_ret
return ret
class TensorAssignWithBoolTensorIndex(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndex, self).__init__()
self.t = Tensor(np.arange(6).reshape([2,3]), dtype = mstype.float64)
def construct(self, a, b, c, u_tensor, _scalar):
a[c] = u_scalar
a[b] = u_tensor
z = a + self.t
return z
class TensorAssignWithBoolTensorIndexError(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndexError, self).__init__()
def construct(self, a, b, c, u_tensor):
a[b][c] = u_tensor
return a
class TensorAssignWithBoolTensorIndex2(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndex2, self).__init__()
self.t = Tensor(np.arange(6).reshape([2,3]), dtype = mstype.float64)
def construct(self, a, u_tensor, _scalar):
a[a>8] = u_tensor
a[a>=6] = u_scalar
a[a<3] = u_scalar
a[a<=5] = u_tensor
a[a==5] = u_scalar
z = a + self.t
return z
class TensorAssignWithBoolTensorIndex2Error(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndex2Error, self).__init__()
def construct(self, a, u_tensor):
a[a>8][a>5] = u_tensor
return a
a = np.random.uniform(1,10,[2,3])
b = a > 5
c = a < 3
Ta = Tensor(a)
Tb = Tensor(b)
Tc = Tensor(c)
Td = Tensor([True, True])
u_tensor = Tensor([1])
u_tensor_error = Tensor([1, 2])
u_scalar = 5
def test_tensor_assign_bool_index():
net1 = TensorAssignWithBoolTensorIndex()
net2 = TensorAssignWithBoolTensorIndex2()
net1(Ta, Tb, Tc, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, Td, Tc, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, u_tensor, Tc, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, Tb, Td, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, Tb, Ta, u_tensor, u_scalar)
with pytest.raises(ValueError):
net1(Ta, Tb, Tc, u_tensor_error, u_scalar)
#net1(Ta, u_tensor, Tc, u_tensor_error, u_scalar)
with pytest.raises(ValueError):
net2(Ta, u_tensor_error, u_scalar)
net3 = TensorAssignWithBoolTensorIndexError()
with pytest.raises(AttributeError):
net3(Ta, Tb, Tc, u_tensor)
with pytest.raises(AttributeError):
net3(Ta, Tb, Tc, u_scalar)
net4 = TensorAssignWithBoolTensorIndex2Error()
with pytest.raises(AttributeError):
net4(Ta, u_tensor)
with pytest.raises(AttributeError):
net4(Ta, u_scalar)
test_cases = [
('TensorAssignWithBoolTensorIndex', {
'block': TensorAssignWithBoolTensorIndex(),
'desc_inputs': [Ta, Tb, Tc, u_tensor, u_scalar],
}),
('TensorAssignWithBoolTensorIndex2', {
'block': TensorAssignWithBoolTensorIndex2(),
'desc_inputs': [Ta, u_tensor, u_scalar],
}),
('SlicePositive', {
'block': NetWorkSlicePositive(),
'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
}),
('SliceReduceDimension', {
'block': NetWorkReduceDimension(),
'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
}),
('SliceNegative', {
'block': NetWorkStepNegative(),
'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
}),
('SliceReduceToScalar', {
'block': NetWorkReduceToScalar(),
'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
}),
]
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_compile():
context.set_context(mode=context.GRAPH_MODE)
return test_cases
def test_tensor_slice_reduce_out_of_bounds_neg():
class NetWork(Cell):
def __init__(self):
super(NetWork, self).__init__()
self.tensor_ret = Tensor(np.array(9, np.int32))
def construct(self, tensor):
ret = tensor[-7, 3, 4]
return ret
input_tensor = Tensor(np.ones([6, 8, 10], np.int32))
net = NetWork()
with pytest.raises(ValueError) as ex:
net(input_tensor)
assert "The `begin[0]` should be an int and must greater or equal to -6, but got -7" in str(ex.value)
def test_tensor_slice_reduce_out_of_bounds_positive():
class NetWork(Cell):
def __init__(self):
super(NetWork, self).__init__()
self.tensor_ret = Tensor(np.array(9, np.int32))
def construct(self, tensor):
ret = tensor[6, 3, 4]
return ret
input_tensor = Tensor(np.ones([6, 8, 10], np.int32))
net = NetWork()
with pytest.raises(ValueError) as ex:
net(input_tensor)
assert "The `begin[0]` should be an int and must less than 6, but got 6" in str(ex.value)