You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_reduce_sum_op.py

253 lines
7.9 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context
x0 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis0 = 3
keep_dims0 = True
x1 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis1 = 3
keep_dims1 = False
x2 = np.random.rand(2, 3, 1, 4).astype(np.float32)
axis2 = 2
keep_dims2 = True
x3 = np.random.rand(2, 3, 1, 4).astype(np.float32)
axis3 = 2
keep_dims3 = False
x4 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis4 = ()
np_axis4 = None
keep_dims4 = True
x5 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis5 = ()
np_axis5 = None
keep_dims5 = False
x6 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis6 = (1, 2)
keep_dims6 = False
x7 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis7 = (1, 2)
keep_dims7 = True
x8 = np.random.rand(2, 1, 1, 4).astype(np.float32)
axis8 = (1, 2)
keep_dims8 = True
x9 = np.random.rand(2, 1, 1, 4).astype(np.float32)
axis9 = (1, 2)
keep_dims9 = False
x10 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis10 = (0, 1, 2, 3)
keep_dims10 = False
x11 = np.random.rand(1, 1, 1, 1).astype(np.float32)
axis11 = (0, 1, 2, 3)
keep_dims11 = False
x12 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis12 = -2
keep_dims12 = False
x13 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis13 = (-2, -1)
keep_dims13 = True
context.set_context(device_target='GPU')
class ReduceSum(nn.Cell):
def __init__(self):
super(ReduceSum, self).__init__()
self.x0 = Tensor(x0)
self.axis0 = axis0
self.keep_dims0 = keep_dims0
self.x1 = Tensor(x1)
self.axis1 = axis1
self.keep_dims1 = keep_dims1
self.x2 = Tensor(x2)
self.axis2 = axis2
self.keep_dims2 = keep_dims2
self.x3 = Tensor(x3)
self.axis3 = axis3
self.keep_dims3 = keep_dims3
self.x4 = Tensor(x4)
self.axis4 = axis4
self.keep_dims4 = keep_dims4
self.x5 = Tensor(x5)
self.axis5 = axis5
self.keep_dims5 = keep_dims5
self.x6 = Tensor(x6)
self.axis6 = axis6
self.keep_dims6 = keep_dims6
self.x7 = Tensor(x7)
self.axis7 = axis7
self.keep_dims7 = keep_dims7
self.x8 = Tensor(x8)
self.axis8 = axis8
self.keep_dims8 = keep_dims8
self.x9 = Tensor(x9)
self.axis9 = axis9
self.keep_dims9 = keep_dims9
self.x10 = Tensor(x10)
self.axis10 = axis10
self.keep_dims10 = keep_dims10
self.x11 = Tensor(x11)
self.axis11 = axis11
self.keep_dims11 = keep_dims11
self.x12 = Tensor(x12)
self.axis12 = axis12
self.keep_dims12 = keep_dims12
self.x13 = Tensor(x13)
self.axis13 = axis13
self.keep_dims13 = keep_dims13
@ms_function
def construct(self):
return (P.ReduceSum(self.keep_dims0)(self.x0, self.axis0),
P.ReduceSum(self.keep_dims1)(self.x1, self.axis1),
P.ReduceSum(self.keep_dims2)(self.x2, self.axis2),
P.ReduceSum(self.keep_dims3)(self.x3, self.axis3),
P.ReduceSum(self.keep_dims4)(self.x4, self.axis4),
P.ReduceSum(self.keep_dims5)(self.x5, self.axis5),
P.ReduceSum(self.keep_dims6)(self.x6, self.axis6),
P.ReduceSum(self.keep_dims7)(self.x7, self.axis7),
P.ReduceSum(self.keep_dims8)(self.x8, self.axis8),
P.ReduceSum(self.keep_dims9)(self.x9, self.axis9),
P.ReduceSum(self.keep_dims10)(self.x10, self.axis10),
P.ReduceSum(self.keep_dims11)(self.x11, self.axis11),
P.ReduceSum(self.keep_dims12)(self.x12, self.axis12),
P.ReduceSum(self.keep_dims13)(self.x13, self.axis13))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_ReduceSum():
reduce_sum = ReduceSum()
output = reduce_sum()
expect0 = np.sum(x0, axis=axis0, keepdims=keep_dims0)
diff0 = output[0].asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape)
expect1 = np.sum(x1, axis=axis1, keepdims=keep_dims1)
diff1 = output[1].asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape)
expect2 = np.sum(x2, axis=axis2, keepdims=keep_dims2)
diff2 = output[2].asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape)
expect3 = np.sum(x3, axis=axis3, keepdims=keep_dims3)
diff3 = output[3].asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3)
assert (output[3].shape() == expect3.shape)
expect4 = np.sum(x4, axis=np_axis4, keepdims=keep_dims4)
diff4 = output[4].asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4)
assert (output[4].shape() == expect4.shape)
expect5 = np.sum(x5, axis=np_axis5, keepdims=keep_dims5)
diff5 = output[5].asnumpy() - expect5
error5 = np.ones(shape=expect5.shape) * 1.0e-5
assert np.all(diff5 < error5)
assert (output[5].shape() == expect5.shape)
expect6 = np.sum(x6, axis=axis6, keepdims=keep_dims6)
diff6 = output[6].asnumpy() - expect6
error6 = np.ones(shape=expect6.shape) * 1.0e-5
assert np.all(diff6 < error6)
assert (output[6].shape() == expect6.shape)
expect7 = np.sum(x7, axis=axis7, keepdims=keep_dims7)
diff7 = output[7].asnumpy() - expect7
error7 = np.ones(shape=expect7.shape) * 1.0e-5
assert np.all(diff7 < error7)
assert (output[7].shape() == expect7.shape)
expect8 = np.sum(x8, axis=axis8, keepdims=keep_dims8)
diff8 = output[8].asnumpy() - expect8
error8 = np.ones(shape=expect8.shape) * 1.0e-5
assert np.all(diff8 < error8)
assert (output[8].shape() == expect8.shape)
expect9 = np.sum(x9, axis=axis9, keepdims=keep_dims9)
diff9 = output[9].asnumpy() - expect9
error9 = np.ones(shape=expect9.shape) * 1.0e-5
assert np.all(diff9 < error9)
assert (output[9].shape() == expect9.shape)
expect10 = np.sum(x10, axis=axis10, keepdims=keep_dims10)
diff10 = output[10].asnumpy() - expect10
error10 = np.ones(shape=expect10.shape) * 1.0e-5
assert np.all(diff10 < error10)
assert (output[10].shape() == expect10.shape)
expect11 = np.sum(x11, axis=axis11, keepdims=keep_dims11)
diff11 = output[11].asnumpy() - expect11
error11 = np.ones(shape=expect11.shape) * 1.0e-5
assert np.all(diff11 < error11)
assert (output[11].shape() == expect11.shape)
expect12 = np.sum(x12, axis=axis12, keepdims=keep_dims12)
diff12 = output[12].asnumpy() - expect12
error12 = np.ones(shape=expect12.shape) * 1.0e-5
assert np.all(diff12 < error12)
assert (output[12].shape() == expect12.shape)
expect13 = np.sum(x13, axis=axis13, keepdims=keep_dims13)
diff13 = output[13].asnumpy() - expect13
error13 = np.ones(shape=expect13.shape) * 1.0e-5
assert np.all(diff13 < error13)
assert (output[13].shape() == expect13.shape)