You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/exec/test_conv.py

82 lines
2.5 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test conv"""
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from ..ut_filter import non_graph_engine
weight = Tensor(np.ones([2, 2]))
in_channels = 3
out_channels = 64
class Net(nn.Cell):
"""Net definition"""
def __init__(self,
cin,
cout,
kernel_size,
stride=1,
pad_mode='pad',
padding=0,
dilation=1,
group=1,
has_bias=False,
weight_init='normal',
bias_init='zeros'):
super(Net, self).__init__()
Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01)
self.conv = nn.Conv2d(cin,
cout,
kernel_size,
stride,
pad_mode,
padding,
dilation,
group,
has_bias,
weight_init,
bias_init)
def construct(self, input_x):
return self.conv(input_x)
@non_graph_engine
def test_compile():
net = Net(3, 6, (3, 3), bias_init='zeros')
input_data = Tensor(np.ones([3, 3, 32, 32]).astype(np.float32) * 0.01)
output = net(input_data)
print(output.asnumpy())
@non_graph_engine
def test_compile2():
net = Net(3, 1, (3, 3), bias_init='zeros')
input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
output = net(input_data)
print(output.asnumpy())
@non_graph_engine
def test_compile3():
net = Net(3, 1, (3, 3), weight_init='ONES')
input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
output = net(input_data)
print(output.asnumpy())