You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_batchdot_op.py

228 lines
7.1 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import mindspore.context as context
from mindspore.ops import composite as C
class NetBatchDot(nn.Cell):
def __init__(self, axes):
super(NetBatchDot, self).__init__()
self.axes = axes
def construct(self, x, y):
return C.batch_dot(x, y, self.axes)
# Implementation with numpy in tensorflow
def _reference_batch_dot(x, y, axes):
if isinstance(axes, int):
axes = [axes, axes]
elif isinstance(axes, tuple):
axes = list(axes)
if axes is None:
if y.ndim == 2:
axes = [x.ndim - 1, y.ndim - 1]
else:
axes = [x.ndim - 1, y.ndim - 2]
if axes[0] < 0:
axes[0] += x.ndim
if axes[1] < 0:
axes[1] += y.ndim
result = []
axes = [axes[0] - 1, axes[1] - 1]
for xi, yi in zip(x, y):
result.append(np.tensordot(xi, yi, axes))
result = np.array(result)
if result.ndim == 1:
result = np.expand_dims(result, -1)
return result
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_batch_dot_fp32():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
np.random.seed(12876)
# case 1
shape_x1 = (3, 12, 5, 2, 3)
shape_x2 = (3, 1, 7, 3, 2)
axes = (-1, -2)
x1 = np.ones(shape=shape_x1).astype(np.float32)
x2 = np.ones(shape=shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 2
shape_x1 = (4, 3, 7, 5)
shape_x2 = (4, 1, 7, 1)
axes = 2
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 3
shape_x1 = (18, 3, 5, 7)
shape_x2 = (18, 1, 3, 7)
axes = -1
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 4
shape_x1 = (2, 11, 3, 9)
shape_x2 = (2, 7, 9, 3)
axes = None
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 5
shape_x1 = (7, 5)
shape_x2 = (7, 5)
axes = None
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 6
shape_x1 = (7, 3, 5)
shape_x2 = (7, 5)
axes = None
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 7
shape_x1 = (7, 5)
shape_x2 = (7, 5, 3)
axes = None
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 8
shape_x1 = (39, 6)
shape_x2 = (39, 6)
axes = -1
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 9
shape_x1 = (21, 2, 3)
shape_x2 = (21, 3, 2)
axes = (-1, -2)
x1 = np.ones(shape=shape_x1).astype(np.float32)
x2 = np.ones(shape=shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 10
shape_x1 = (4, 3, 2, 1, 7, 5)
shape_x2 = (4, 5, 7, 1)
axes = -2
x1 = np.ones(shape=shape_x1).astype(np.float32)
x2 = np.ones(shape=shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)
# case 10
shape_x1 = (4, 3, 2, 1, 7, 5)
shape_x2 = (4, 5, 7, 1)
axes = -2
x1 = np.ones(shape=shape_x1).astype(np.float16)
x2 = np.ones(shape=shape_x2).astype(np.float16)
x1_tensor = Tensor(x1, dtype=mindspore.float16)
x2_tensor = Tensor(x2, dtype=mindspore.float16)
network = NetBatchDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
tf_result = _reference_batch_dot(x1, x2, axes)
assert np.allclose(ms_result_np, tf_result)