You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
5.4 KiB
137 lines
5.4 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
train and infer lenet quantization network
|
|
"""
|
|
|
|
import os
|
|
import pytest
|
|
from mindspore import context
|
|
import mindspore.nn as nn
|
|
from mindspore.nn.metrics import Accuracy
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore.train import Model
|
|
from mindspore.train.quant import quant
|
|
from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
|
|
from dataset import create_dataset
|
|
from config import nonquant_cfg, quant_cfg
|
|
from lenet import LeNet5
|
|
from lenet_fusion import LeNet5 as LeNet5Fusion
|
|
|
|
device_target = 'GPU'
|
|
data_path = "/home/workspace/mindspore_dataset/mnist"
|
|
|
|
|
|
def train_lenet():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
|
|
cfg = nonquant_cfg
|
|
ds_train = create_dataset(os.path.join(data_path, "train"),
|
|
cfg.batch_size)
|
|
|
|
network = LeNet5(cfg.num_classes)
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
|
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
|
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
|
ckpoint_cb = ModelCheckpoint(prefix="ckpt_lenet_noquant", config=config_ck)
|
|
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
|
|
|
print("============== Starting Training Lenet==============")
|
|
model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()],
|
|
dataset_sink_mode=True)
|
|
|
|
|
|
def train_lenet_quant():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
|
|
cfg = quant_cfg
|
|
ckpt_path = './ckpt_lenet_noquant-10_1875.ckpt'
|
|
ds_train = create_dataset(os.path.join(data_path, "train"), cfg.batch_size, 1)
|
|
step_size = ds_train.get_dataset_size()
|
|
|
|
# define fusion network
|
|
network = LeNet5Fusion(cfg.num_classes)
|
|
|
|
# load quantization aware network checkpoint
|
|
param_dict = load_checkpoint(ckpt_path)
|
|
load_nonquant_param_into_quant_net(network, param_dict)
|
|
|
|
# convert fusion network to quantization aware network
|
|
network = quant.convert_quant_network(network, quant_delay=900, bn_fold=False, per_channel=[True, False],
|
|
symmetric=[False, False])
|
|
|
|
# define network loss
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
# define network optimization
|
|
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
|
|
|
# call back and monitor
|
|
config_ckpt = CheckpointConfig(save_checkpoint_steps=cfg.epoch_size * step_size,
|
|
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
|
ckpt_callback = ModelCheckpoint(prefix="ckpt_lenet_quant", config=config_ckpt)
|
|
|
|
# define model
|
|
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
|
|
|
print("============== Starting Training ==============")
|
|
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpt_callback, LossMonitor()],
|
|
dataset_sink_mode=True)
|
|
print("============== End Training ==============")
|
|
|
|
|
|
def eval_quant():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
|
|
cfg = quant_cfg
|
|
ds_eval = create_dataset(os.path.join(data_path, "test"), cfg.batch_size, 1)
|
|
ckpt_path = './ckpt_lenet_quant-10_937.ckpt'
|
|
# define fusion network
|
|
network = LeNet5Fusion(cfg.num_classes)
|
|
# convert fusion network to quantization aware network
|
|
network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000,
|
|
per_channel=[True, False])
|
|
|
|
# define loss
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
# define network optimization
|
|
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
|
|
|
# call back and monitor
|
|
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
|
|
|
# load quantization aware network checkpoint
|
|
param_dict = load_checkpoint(ckpt_path)
|
|
not_load_param = load_param_into_net(network, param_dict)
|
|
if not_load_param:
|
|
raise ValueError("Load param into net fail!")
|
|
|
|
print("============== Starting Testing ==============")
|
|
acc = model.eval(ds_eval, dataset_sink_mode=True)
|
|
print("============== {} ==============".format(acc))
|
|
assert acc['Accuracy'] > 0.98
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_lenet_quant():
|
|
train_lenet()
|
|
train_lenet_quant()
|
|
eval_quant()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
train_lenet_quant()
|