You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/minddata/dataset/api/datasets.cc

1059 lines
38 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/include/datasets.h"
#include <algorithm>
#include <fstream>
#include <unordered_set>
#include <utility>
#include "minddata/dataset/include/samplers.h"
#include "minddata/dataset/include/transforms.h"
// Source dataset headers (in alphabetical order)
#include "minddata/dataset/engine/dataset_iterator.h"
#include "minddata/dataset/engine/datasetops/source/album_op.h"
#include "minddata/dataset/engine/datasetops/source/celeba_op.h"
#include "minddata/dataset/engine/datasetops/source/cifar_op.h"
#include "minddata/dataset/engine/datasetops/source/clue_op.h"
#include "minddata/dataset/engine/datasetops/source/coco_op.h"
#include "minddata/dataset/engine/datasetops/source/csv_op.h"
#include "minddata/dataset/engine/datasetops/source/image_folder_op.h"
#ifndef ENABLE_ANDROID
#include "minddata/dataset/engine/datasetops/source/manifest_op.h"
#include "minddata/dataset/engine/datasetops/source/mindrecord_op.h"
#include "minddata/dataset/engine/ir/cache/dataset_cache_impl.h"
#endif
#include "minddata/dataset/engine/datasetops/source/mnist_op.h"
#include "minddata/dataset/engine/datasetops/source/random_data_op.h"
#include "minddata/dataset/engine/datasetops/source/text_file_op.h"
#ifndef ENABLE_ANDROID
#include "minddata/dataset/engine/datasetops/source/tf_reader_op.h"
#include "minddata/dataset/engine/datasetops/source/voc_op.h"
#endif
// Dataset operator headers (in alphabetical order)
#include "minddata/dataset/engine/datasetops/map_op/map_op.h"
#include "minddata/dataset/engine/datasetops/skip_op.h"
#include "minddata/dataset/engine/datasetops/zip_op.h"
// Sampler headers (in alphabetical order)
#include "minddata/dataset/engine/datasetops/source/sampler/random_sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
// IR non-leaf nodes
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
#include "minddata/dataset/engine/ir/datasetops/concat_node.h"
#include "minddata/dataset/engine/ir/datasetops/map_node.h"
#include "minddata/dataset/engine/ir/datasetops/project_node.h"
#include "minddata/dataset/engine/ir/datasetops/rename_node.h"
#include "minddata/dataset/engine/ir/datasetops/repeat_node.h"
#include "minddata/dataset/engine/ir/datasetops/shuffle_node.h"
#include "minddata/dataset/engine/ir/datasetops/skip_node.h"
#include "minddata/dataset/engine/ir/datasetops/take_node.h"
#include "minddata/dataset/engine/ir/datasetops/transfer_node.h"
#include "minddata/dataset/engine/ir/datasetops/zip_node.h"
#ifndef ENABLE_ANDROID
#include "minddata/dataset/engine/ir/datasetops/bucket_batch_by_length_node.h"
#include "minddata/dataset/engine/ir/datasetops/build_sentence_piece_vocab_node.h"
#include "minddata/dataset/engine/ir/datasetops/build_vocab_node.h"
#endif
#include "minddata/dataset/core/config_manager.h"
#include "minddata/dataset/util/path.h"
#include "minddata/dataset/util/random.h"
#include "minddata/dataset/util/services.h"
// IR leaf nodes
#include "minddata/dataset/engine/ir/datasetops/source/album_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/celeba_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/cifar100_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/cifar10_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/clue_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/coco_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/csv_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/mnist_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/text_file_node.h"
// IR leaf nodes disabled for android
#ifndef ENABLE_ANDROID
#include "minddata/dataset/engine/ir/datasetops/source/manifest_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/minddata_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/tf_record_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/voc_node.h"
#endif
namespace mindspore {
namespace dataset {
namespace api {
// Function to create the iterator, which will build and launch the execution tree.
std::shared_ptr<Iterator> Dataset::CreateIterator(std::vector<std::string> columns) {
std::shared_ptr<Iterator> iter;
try {
auto ds = shared_from_this();
// The specified columns will be selected from the dataset and passed down the pipeline
// in the order specified, other columns will be discarded.
if (!columns.empty()) {
ds = ds->Project(columns);
}
iter = std::make_shared<Iterator>();
Status rc = iter->BuildAndLaunchTree(ds);
if (rc.IsError()) {
MS_LOG(ERROR) << "CreateIterator failed." << rc;
return nullptr;
}
return iter;
} catch (const std::exception &err) {
MS_LOG(ERROR) << "CreateIterator: Iterator exception caught: " << err.what();
return nullptr;
}
return iter;
}
// Function to return a transferred Node that transfers data through a device.
bool Dataset::DeviceQueue(bool send_epoch_end) {
Status rc;
// Build and launch tree
std::unique_ptr<RuntimeContext> runtime_context = std::make_unique<RuntimeContext>();
rc = runtime_context->Init();
if (rc.IsError()) {
MS_LOG(ERROR) << "Failed to init runtime context. Error status: " << rc;
return false;
}
// Get a uuid for queue name
std::string queue_name = Services::GetUniqueID();
// TODO(CRC):
// Get device type from ms context
std::string device_type = "CPU";
// Get device ID from children
int32_t device_id = 0;
rc = TransferNode::get_distribution(shared_from_this(), &device_id);
if (rc.IsError()) {
MS_LOG(ERROR) << "Failed to get shard id. Error status: " << rc;
return false;
}
// Add TransferNode IR on top of dataset d
auto ds = std::make_shared<TransferNode>(shared_from_this(), queue_name, device_id, device_type, send_epoch_end);
// Get ToDevice consumer
auto consumer = std::make_unique<ToDevice>(device_type, send_epoch_end, -1);
ToDevice *consumer_ = consumer.get();
rc = consumer->Init(ds);
if (rc.IsError()) {
MS_LOG(ERROR) << "ToDevice: Failed to init. Error status: " << rc;
return false;
}
runtime_context->AssignConsumer(std::move(consumer));
// Send data to device
rc = consumer_->Send();
if (rc.IsError()) {
MS_LOG(ERROR) << "ToDevice: Failed to send data to device. Error status: " << rc;
return false;
}
return true;
}
#ifndef ENABLE_ANDROID
// Function to create the saver, which will build and launch the execution tree and save data
bool Dataset::Save(std::string dataset_path, int32_t num_files, std::string dataset_type) {
Status rc;
// Build and launch tree
auto ds = shared_from_this();
std::unique_ptr<RuntimeContext> runtime_context = std::make_unique<RuntimeContext>();
rc = runtime_context->Init();
if (rc.IsError()) {
MS_LOG(ERROR) << "CreateSaver failed." << rc;
return false;
}
// Get SaveToDisk consumer
auto consumer = std::make_unique<SaveToDisk>(dataset_path, num_files, dataset_type);
rc = consumer->ValidateParams();
if (rc.IsError()) {
MS_LOG(ERROR) << "CreateSaver failed." << rc;
return false;
}
SaveToDisk *consumer_ = consumer.get();
rc = consumer->Init(ds);
if (rc.IsError()) {
MS_LOG(ERROR) << "CreateSaver failed." << rc;
return false;
}
runtime_context->AssignConsumer(std::move(consumer));
// Save data into file
rc = consumer_->Save();
if (rc.IsError()) {
MS_LOG(ERROR) << "Saver: Failed to save data into file. Error status: " << rc;
return false;
}
// Shut down the data pipeline
rc = runtime_context->Terminate();
if (rc.IsError()) {
MS_LOG(ERROR) << "Saver: Failed to shut down pipeline. Error status: " << rc;
return false;
}
return true;
}
#endif
// Constructor
Dataset::Dataset() {
// Fetch some default value from config manager
std::shared_ptr<ConfigManager> cfg = GlobalContext::config_manager();
num_workers_ = cfg->num_parallel_workers();
rows_per_buffer_ = cfg->rows_per_buffer();
connector_que_size_ = cfg->op_connector_size();
worker_connector_size_ = cfg->worker_connector_size();
tree_getters_ = std::make_shared<TreeGetters>();
}
int64_t Dataset::GetDatasetSize() {
int64_t dataset_size;
auto ds = shared_from_this();
Status rc;
std::unique_ptr<RuntimeContext> runtime_context = std::make_unique<RuntimeContext>();
rc = runtime_context->Init();
if (rc.IsError()) {
MS_LOG(ERROR) << "GetDatasetSize: Initializing RuntimeContext failed.";
return -1;
}
if (!tree_getters_->isInitialized()) {
rc = tree_getters_->Init(ds);
if (rc.IsError()) {
MS_LOG(ERROR) << "GetDatasetSize: Initializing TreeGetters failed.";
return -1;
}
}
rc = tree_getters_->GetDatasetSize(&dataset_size);
return rc.IsError() ? -1 : dataset_size;
}
std::vector<DataType> Dataset::GetOutputTypes() {
std::vector<DataType> types;
Status s;
if (!tree_getters_->isInitialized()) {
s = tree_getters_->Init(shared_from_this());
if (s.IsError()) {
MS_LOG(ERROR) << "GetDatasetSize: Initializing RuntimeContext failed.";
return types;
}
}
tree_getters_->GetOutputTypes(&types);
return types;
}
std::vector<TensorShape> Dataset::GetOutputShapes() {
std::vector<TensorShape> shapes;
Status s;
if (!tree_getters_->isInitialized()) {
s = tree_getters_->Init(shared_from_this());
if (s.IsError()) {
MS_LOG(ERROR) << "GetDatasetSize: Initializing RuntimeContext failed.";
return shapes;
}
}
tree_getters_->GetOutputShapes(&shapes);
return shapes;
}
// Constructor to initialize the cache
Dataset::Dataset(const std::shared_ptr<DatasetCache> &dataset_cache) : Dataset() { cache_ = dataset_cache; }
/// \brief Function to create a SchemaObj
/// \param[in] schema_file Path of schema file
/// \return Shared pointer to the current schema
std::shared_ptr<SchemaObj> Schema(const std::string &schema_file) {
auto schema = std::make_shared<SchemaObj>(schema_file);
return schema->init() ? schema : nullptr;
}
// FUNCTIONS TO CREATE DATASETS FOR LEAF-NODE DATASETS
// (In alphabetical order)
// Function to create a AlbumNode.
std::shared_ptr<AlbumNode> Album(const std::string &dataset_dir, const std::string &data_schema,
const std::vector<std::string> &column_names, bool decode,
const std::shared_ptr<SamplerObj> &sampler) {
auto ds = std::make_shared<AlbumNode>(dataset_dir, data_schema, column_names, decode, sampler);
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a CelebANode.
std::shared_ptr<CelebANode> CelebA(const std::string &dataset_dir, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler, bool decode,
const std::set<std::string> &extensions,
const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<CelebANode>(dataset_dir, usage, sampler, decode, extensions, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a Cifar10Node.
std::shared_ptr<Cifar10Node> Cifar10(const std::string &dataset_dir, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler,
const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<Cifar10Node>(dataset_dir, usage, sampler, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a Cifar100Node.
std::shared_ptr<Cifar100Node> Cifar100(const std::string &dataset_dir, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler,
const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<Cifar100Node>(dataset_dir, usage, sampler, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a CLUENode.
std::shared_ptr<CLUENode> CLUE(const std::vector<std::string> &clue_files, const std::string &task,
const std::string &usage, int64_t num_samples, ShuffleMode shuffle, int32_t num_shards,
int32_t shard_id, const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<CLUENode>(clue_files, task, usage, num_samples, shuffle, num_shards, shard_id, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a CocoNode.
std::shared_ptr<CocoNode> Coco(const std::string &dataset_dir, const std::string &annotation_file,
const std::string &task, const bool &decode, const std::shared_ptr<SamplerObj> &sampler,
const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<CocoNode>(dataset_dir, annotation_file, task, decode, sampler, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a CSVNode.
std::shared_ptr<CSVNode> CSV(const std::vector<std::string> &dataset_files, char field_delim,
const std::vector<std::shared_ptr<CsvBase>> &column_defaults,
const std::vector<std::string> &column_names, int64_t num_samples, ShuffleMode shuffle,
int32_t num_shards, int32_t shard_id, const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<CSVNode>(dataset_files, field_delim, column_defaults, column_names, num_samples, shuffle,
num_shards, shard_id, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a ImageFolderNode.
std::shared_ptr<ImageFolderNode> ImageFolder(const std::string &dataset_dir, bool decode,
const std::shared_ptr<SamplerObj> &sampler,
const std::set<std::string> &extensions,
const std::map<std::string, int32_t> &class_indexing,
const std::shared_ptr<DatasetCache> &cache) {
// This arg exists in ImageFolderOp, but not externalized (in Python API). The default value is false.
bool recursive = false;
// Create logical representation of ImageFolderNode.
auto ds =
std::make_shared<ImageFolderNode>(dataset_dir, decode, sampler, recursive, extensions, class_indexing, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
#ifndef ENABLE_ANDROID
// Function to create a ManifestNode.
std::shared_ptr<ManifestNode> Manifest(const std::string &dataset_file, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler,
const std::map<std::string, int32_t> &class_indexing, bool decode,
const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<ManifestNode>(dataset_file, usage, sampler, class_indexing, decode, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a MindDataNode.
std::shared_ptr<MindDataNode> MindData(const std::string &dataset_file, const std::vector<std::string> &columns_list,
const std::shared_ptr<SamplerObj> &sampler, nlohmann::json padded_sample,
int64_t num_padded) {
auto ds = std::make_shared<MindDataNode>(dataset_file, columns_list, sampler, padded_sample, num_padded);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a MindDataNode.
std::shared_ptr<MindDataNode> MindData(const std::vector<std::string> &dataset_files,
const std::vector<std::string> &columns_list,
const std::shared_ptr<SamplerObj> &sampler, nlohmann::json padded_sample,
int64_t num_padded) {
auto ds = std::make_shared<MindDataNode>(dataset_files, columns_list, sampler, padded_sample, num_padded);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
#endif
// Function to create a MnistNode.
std::shared_ptr<MnistNode> Mnist(const std::string &dataset_dir, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler,
const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<MnistNode>(dataset_dir, usage, sampler, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to overload "+" operator to concat two datasets
std::shared_ptr<ConcatNode> operator+(const std::shared_ptr<Dataset> &datasets1,
const std::shared_ptr<Dataset> &datasets2) {
std::shared_ptr<ConcatNode> ds = std::make_shared<ConcatNode>(std::vector({datasets2, datasets1}));
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a TextFileNode.
std::shared_ptr<TextFileNode> TextFile(const std::vector<std::string> &dataset_files, int64_t num_samples,
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<TextFileNode>(dataset_files, num_samples, shuffle, num_shards, shard_id, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
#ifndef ENABLE_ANDROID
// Function to create a VOCNode.
std::shared_ptr<VOCNode> VOC(const std::string &dataset_dir, const std::string &task, const std::string &usage,
const std::map<std::string, int32_t> &class_indexing, bool decode,
const std::shared_ptr<SamplerObj> &sampler, const std::shared_ptr<DatasetCache> &cache) {
auto ds = std::make_shared<VOCNode>(dataset_dir, task, usage, class_indexing, decode, sampler, cache);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
#endif
// Function to create a ZipNode.
std::shared_ptr<ZipNode> Zip(const std::vector<std::shared_ptr<Dataset>> &datasets) {
auto ds = std::make_shared<ZipNode>(datasets);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// FUNCTIONS TO CREATE DATASETS FOR DATASET OPS
// (In alphabetical order)
// Function to create a Batch dataset
std::shared_ptr<BatchNode> Dataset::Batch(int32_t batch_size, bool drop_remainder) {
// Default values
std::vector<std::string> cols_to_map = {};
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map;
bool pad = false;
auto ds = std::make_shared<BatchNode>(shared_from_this(), batch_size, drop_remainder, pad, cols_to_map, pad_map);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
#ifndef ENABLE_ANDROID
// Function to create a BucketBatchByLength dataset
std::shared_ptr<BucketBatchByLengthNode> Dataset::BucketBatchByLength(
const std::vector<std::string> &column_names, const std::vector<int32_t> &bucket_boundaries,
const std::vector<int32_t> &bucket_batch_sizes, std::function<TensorRow(TensorRow)> element_length_function,
const std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> &pad_info, bool pad_to_bucket_boundary,
bool drop_remainder) {
auto ds = std::make_shared<BucketBatchByLengthNode>(shared_from_this(), column_names, bucket_boundaries,
bucket_batch_sizes, element_length_function, pad_info,
pad_to_bucket_boundary, drop_remainder);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a SentencePieceVocab from dataset
std::shared_ptr<SentencePieceVocab> Dataset::BuildSentencePieceVocab(
const std::vector<std::string> &col_names, uint32_t vocab_size, float character_coverage,
SentencePieceModel model_type, const std::unordered_map<std::string, std::string> &params) {
auto vocab = std::make_shared<SentencePieceVocab>();
auto ds = std::make_shared<BuildSentenceVocabNode>(shared_from_this(), vocab, col_names, vocab_size,
character_coverage, model_type, params);
// Validate input params
if (!ds->ValidateParams()) {
return nullptr;
}
// Run tree here to start building vocab
std::shared_ptr<Iterator> iter = ds->CreateIterator();
if (iter == nullptr) {
MS_LOG(ERROR) << "Fail to run iterator in BuildSentencePieceVocab.";
return nullptr;
}
// Finish building vocab by triggering GetNextRow
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
if (!iter->GetNextRow(&row)) {
return nullptr;
}
return vocab;
}
// Function to create a Vocab from dataset
std::shared_ptr<Vocab> Dataset::BuildVocab(const std::vector<std::string> &columns,
const std::pair<int64_t, int64_t> &freq_range, int64_t top_k,
const std::vector<std::string> &special_tokens, bool special_first) {
auto vocab = std::make_shared<Vocab>();
auto ds = std::make_shared<BuildVocabNode>(shared_from_this(), vocab, columns, freq_range, top_k, special_tokens,
special_first);
if (!ds->ValidateParams()) {
return nullptr;
}
// Run tree here to starting building vocab
std::shared_ptr<Iterator> iter = ds->CreateIterator();
if (iter == nullptr) {
MS_LOG(ERROR) << "Fail to run iterator in BuildVocab.";
return nullptr;
}
// Finish building vocab by triggering GetNextRow
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
if (!iter->GetNextRow(&row)) {
return nullptr;
}
return vocab;
}
#endif
// Function to create a Concat dataset
std::shared_ptr<ConcatNode> Dataset::Concat(const std::vector<std::shared_ptr<Dataset>> &datasets) {
auto ds = std::make_shared<ConcatNode>(datasets);
ds->children.push_back(shared_from_this());
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a Map dataset.
std::shared_ptr<MapNode> Dataset::Map(std::vector<std::shared_ptr<TensorOperation>> operations,
std::vector<std::string> input_columns, std::vector<std::string> output_columns,
const std::vector<std::string> &project_columns,
const std::shared_ptr<DatasetCache> &cache) {
auto ds =
std::make_shared<MapNode>(shared_from_this(), operations, input_columns, output_columns, project_columns, cache);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a ProjectNode.
std::shared_ptr<ProjectNode> Dataset::Project(const std::vector<std::string> &columns) {
auto ds = std::make_shared<ProjectNode>(shared_from_this(), columns);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a RenameNode.
std::shared_ptr<RenameNode> Dataset::Rename(const std::vector<std::string> &input_columns,
const std::vector<std::string> &output_columns) {
auto ds = std::make_shared<RenameNode>(shared_from_this(), input_columns, output_columns);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create Repeat dataset.
std::shared_ptr<Dataset> Dataset::Repeat(int32_t count) {
// Workaround for repeat == 1, do not inject repeat.
if (count == 1) {
return shared_from_this();
}
auto ds = std::make_shared<RepeatNode>(shared_from_this(), count);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a ShuffleOp
std::shared_ptr<ShuffleNode> Dataset::Shuffle(int32_t buffer_size) {
// Pass in reshuffle_each_epoch with true
auto ds = std::make_shared<ShuffleNode>(shared_from_this(), buffer_size, true);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a SkipNode.
std::shared_ptr<SkipNode> Dataset::Skip(int32_t count) {
auto ds = std::make_shared<SkipNode>(shared_from_this(), count);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a TakeNode.
std::shared_ptr<Dataset> Dataset::Take(int32_t count) {
// If count is greater than the number of element in dataset or equal to -1,
// all the element in dataset will be taken
if (count == -1) {
return shared_from_this();
}
auto ds = std::make_shared<TakeNode>(shared_from_this(), count);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a Zip dataset
std::shared_ptr<ZipNode> Dataset::Zip(const std::vector<std::shared_ptr<Dataset>> &datasets) {
// Default values
auto ds = std::make_shared<ZipNode>(datasets);
ds->children.push_back(shared_from_this());
return ds->ValidateParams() ? ds : nullptr;
}
Status Dataset::AddCacheOp(std::vector<std::shared_ptr<DatasetOp>> *node_ops) {
if (cache_ != nullptr) {
std::shared_ptr<DatasetOp> cache_op;
RETURN_IF_NOT_OK(cache_->CreateCacheOp(num_workers_, &cache_op));
node_ops->push_back(cache_op);
}
return Status::OK();
}
int64_t Dataset::GetBatchSize() {
int64_t batch_size;
auto ds = shared_from_this();
Status rc;
std::unique_ptr<RuntimeContext> runtime_context = std::make_unique<RuntimeContext>();
rc = runtime_context->Init();
if (rc.IsError()) {
MS_LOG(ERROR) << "GetBatchSize: Initializing RuntimeContext failed.";
return -1;
}
rc = tree_getters_->Init(ds);
if (rc.IsError()) {
MS_LOG(ERROR) << "GetBatchSize: Initializing TreeGetters failed.";
return -1;
}
rc = tree_getters_->GetBatchSize(&batch_size);
return rc.IsError() ? -1 : batch_size;
}
int64_t Dataset::GetRepeatCount() {
int64_t repeat_count;
auto ds = shared_from_this();
Status rc;
std::unique_ptr<RuntimeContext> runtime_context = std::make_unique<RuntimeContext>();
rc = runtime_context->Init();
if (rc.IsError()) {
MS_LOG(ERROR) << "GetRepeatCount: Initializing RuntimeContext failed.";
return -1;
}
rc = tree_getters_->Init(ds);
if (rc.IsError()) {
MS_LOG(ERROR) << "GetRepeatCount: Initializing TreeGetters failed.";
return -1;
}
rc = tree_getters_->GetRepeatCount(&repeat_count);
return rc.IsError() ? 0 : repeat_count;
}
SchemaObj::SchemaObj(const std::string &schema_file) : schema_file_(schema_file), num_rows_(0), dataset_type_("") {}
// SchemaObj init function
bool SchemaObj::init() {
if (schema_file_ != "") {
Path schema_file(schema_file_);
if (!schema_file.Exists()) {
MS_LOG(ERROR) << "The file " << schema_file << " does not exist or permission denied!";
return false;
}
nlohmann::json js;
try {
std::ifstream in(schema_file_);
in >> js;
if (js.find("columns") == js.end()) {
MS_LOG(ERROR) << "\"columns\" node is required in the schema json file.";
return false;
}
} catch (const std::exception &err) {
MS_LOG(ERROR) << "Schema file failed to load";
return false;
}
return from_json(js);
}
return true;
}
// Function to add a column to schema with a mstype de_type
bool SchemaObj::add_column(std::string name, TypeId de_type, std::vector<int32_t> shape) {
nlohmann::json new_column;
new_column["name"] = name;
// if de_type is mstype
DataType data_type = dataset::MSTypeToDEType(de_type);
new_column["type"] = data_type.ToString();
if (shape.size() > 0) {
new_column["shape"] = shape;
new_column["rank"] = shape.size();
} else {
new_column["rank"] = 1;
}
columns_.push_back(new_column);
return true;
}
// Function to add a column to schema with a string de_type
bool SchemaObj::add_column(std::string name, std::string de_type, std::vector<int32_t> shape) {
nlohmann::json new_column;
new_column["name"] = name;
DataType data_type(de_type);
new_column["type"] = data_type.ToString();
if (shape.size() > 0) {
new_column["shape"] = shape;
new_column["rank"] = shape.size();
} else {
new_column["rank"] = 1;
}
columns_.push_back(new_column);
return true;
}
std::string SchemaObj::to_json() {
nlohmann::json json_file;
json_file["columns"] = columns_;
if (dataset_type_ != "") {
json_file["datasetType"] = dataset_type_;
}
if (num_rows_ > 0) {
json_file["numRows"] = num_rows_;
}
return json_file.dump(2);
}
bool SchemaObj::parse_column(nlohmann::json columns) {
std::string name, de_type;
std::vector<int32_t> shape;
columns_.clear();
if (columns.type() == nlohmann::json::value_t::array) {
// reference to python list
for (auto column : columns) {
auto key_name = column.find("name");
if (key_name == column.end()) {
MS_LOG(ERROR) << "Column's name is missing";
return false;
}
name = *key_name;
auto key_type = column.find("type");
if (key_type == column.end()) {
MS_LOG(ERROR) << "Column's type is missing";
return false;
}
de_type = *key_type;
shape.clear();
auto key_shape = column.find("shape");
if (key_shape != column.end()) {
shape.insert(shape.end(), (*key_shape).begin(), (*key_shape).end());
}
if (!add_column(name, de_type, shape)) {
return false;
}
}
} else if (columns.type() == nlohmann::json::value_t::object) {
for (const auto &it_child : columns.items()) {
name = it_child.key();
auto key_type = it_child.value().find("type");
if (key_type == it_child.value().end()) {
MS_LOG(ERROR) << "Column's type is missing";
return false;
}
de_type = *key_type;
shape.clear();
auto key_shape = it_child.value().find("shape");
if (key_shape != it_child.value().end()) {
shape.insert(shape.end(), (*key_shape).begin(), (*key_shape).end());
}
if (!add_column(name, de_type, shape)) {
return false;
}
}
} else {
MS_LOG(ERROR) << "columns must be dict or list, columns contain name, type, shape(optional).";
return false;
}
return true;
}
bool SchemaObj::from_json(nlohmann::json json_obj) {
for (const auto &it_child : json_obj.items()) {
if (it_child.key() == "datasetType") {
dataset_type_ = it_child.value();
} else if (it_child.key() == "numRows") {
num_rows_ = it_child.value();
} else if (it_child.key() == "columns") {
if (!parse_column(it_child.value())) {
MS_LOG(ERROR) << "parse columns failed";
return false;
}
} else {
MS_LOG(ERROR) << "Unknown field " << it_child.key();
return false;
}
}
if (columns_.empty()) {
MS_LOG(ERROR) << "Columns are missing.";
return false;
}
if (num_rows_ <= 0) {
MS_LOG(ERROR) << "numRows must be greater than 0";
return false;
}
return true;
}
// OTHER FUNCTIONS
// Helper function to compute a default shuffle size
Status ComputeShuffleSize(int64_t num_files, int64_t num_devices, int64_t num_rows, int64_t total_rows,
int64_t *shuffle_size) {
const int64_t average_files_multiplier = 4;
const int64_t shuffle_max = 10000;
int64_t avg_rows_per_file = 0;
// Adjust the num rows per shard if sharding was given
if (num_devices > 0) {
if (num_rows % num_devices == 0) {
num_rows = num_rows / num_devices;
} else {
num_rows = (num_rows / num_devices) + 1;
}
}
// Cap based on total rows directive. Some ops do not have this and give value of 0.
if (total_rows > 0) {
num_rows = std::min(num_rows, total_rows);
}
// get the average per file
CHECK_FAIL_RETURN_UNEXPECTED(num_files != 0, "The size of dataset_files must greater than 0.");
avg_rows_per_file = num_rows / num_files;
*shuffle_size = std::max(avg_rows_per_file * average_files_multiplier, shuffle_max);
return Status::OK();
}
// Helper function to inject a shuffle operator over top of current operator being built
Status AddShuffleOp(int64_t num_files, int64_t num_devices, int64_t num_rows, int64_t total_rows,
int32_t connector_que_size, int32_t rows_per_buffer, std::shared_ptr<DatasetOp> *shuffle_op) {
std::shared_ptr<ShuffleOp> new_shuffle_op = nullptr;
int64_t shuffle_size = 0;
RETURN_EMPTY_IF_ERROR(ComputeShuffleSize(num_files, num_devices, num_rows, total_rows, &shuffle_size));
MS_LOG(INFO) << "Dataset::AddShuffleOp - num_rows: " << num_rows << ", shuffle_size: " << shuffle_size;
// Add the shuffle op
*shuffle_op = std::make_shared<ShuffleOp>(shuffle_size, GetSeed(), connector_que_size, true, rows_per_buffer);
return Status::OK();
}
// Helper function to validate dataset directory parameter
Status ValidateDatasetDirParam(const std::string &dataset_name, std::string dataset_dir) {
if (dataset_dir.empty()) {
std::string err_msg = dataset_name + ": dataset_dir is not specified.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
Path dir(dataset_dir);
if (!dir.IsDirectory()) {
std::string err_msg = dataset_name + ": dataset_dir: [" + dataset_dir + "] is an invalid directory path.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (access(dataset_dir.c_str(), R_OK) == -1) {
std::string err_msg = dataset_name + ": No access to specified dataset path: " + dataset_dir;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Helper function to validate dataset files parameter
Status ValidateDatasetFilesParam(const std::string &dataset_name, const std::vector<std::string> &dataset_files) {
if (dataset_files.empty()) {
std::string err_msg = dataset_name + ": dataset_files is not specified.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
for (auto f : dataset_files) {
Path dataset_file(f);
if (!dataset_file.Exists()) {
std::string err_msg = dataset_name + ": dataset file: [" + f + "] is invalid or does not exist.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (access(dataset_file.toString().c_str(), R_OK) == -1) {
std::string err_msg = dataset_name + ": No access to specified dataset file: " + f;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
return Status::OK();
}
// Helper function to validate dataset num_shards and shard_id parameters
Status ValidateDatasetShardParams(const std::string &dataset_name, int32_t num_shards, int32_t shard_id) {
if (num_shards <= 0) {
std::string err_msg = dataset_name + ": Invalid num_shards: " + std::to_string(num_shards);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (shard_id < 0 || shard_id >= num_shards) {
// num_shards;
std::string err_msg = dataset_name + ": Invalid input, shard_id: " + std::to_string(shard_id) +
", num_shards: " + std::to_string(num_shards);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Helper function to validate dataset sampler parameter
Status ValidateDatasetSampler(const std::string &dataset_name, const std::shared_ptr<SamplerObj> &sampler) {
if (sampler == nullptr) {
std::string err_msg = dataset_name + ": Sampler is not constructed correctly, sampler: nullptr";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
Status ValidateStringValue(const std::string &dataset_name, const std::string &str,
const std::unordered_set<std::string> &valid_strings) {
if (valid_strings.find(str) == valid_strings.end()) {
std::string mode;
mode = std::accumulate(valid_strings.begin(), valid_strings.end(), mode,
[](std::string a, std::string b) { return std::move(a) + " " + std::move(b); });
std::string err_msg = dataset_name + ": " + str + " does not match any mode in [" + mode + " ]";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Helper function to validate dataset input/output column parameter
Status ValidateDatasetColumnParam(const std::string &dataset_name, const std::string &column_param,
const std::vector<std::string> &columns) {
if (columns.empty()) {
std::string err_msg = dataset_name + ":" + column_param + " should not be empty string";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
for (uint32_t i = 0; i < columns.size(); ++i) {
if (columns[i].empty()) {
std::string err_msg = dataset_name + ":" + column_param + "[" + std::to_string(i) + "] must not be empty";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
std::set<std::string> columns_set(columns.begin(), columns.end());
if (columns_set.size() != columns.size()) {
std::string err_msg = dataset_name + ":" + column_param + ": Every column name should not be same with others";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
#ifndef ENABLE_ANDROID
std::shared_ptr<DatasetCache> CreateDatasetCache(session_id_type id, uint64_t mem_sz, bool spill,
std::optional<std::string> hostname, std::optional<int32_t> port,
std::optional<int32_t> num_connections,
std::optional<int32_t> prefetch_sz) {
auto cache = std::make_shared<DatasetCacheImpl>(id, mem_sz, spill, hostname, port, num_connections, prefetch_sz);
return cache->ValidateParams() ? cache : nullptr;
}
#endif
} // namespace api
} // namespace dataset
} // namespace mindspore