You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
6.6 KiB
143 lines
6.6 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# less required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
"""train MaskRcnn and get checkpoint files."""
|
|
|
|
import os
|
|
import time
|
|
import argparse
|
|
import ast
|
|
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore import context, Tensor
|
|
from mindspore.communication.management import init
|
|
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
|
|
from mindspore.train import Model
|
|
from mindspore.context import ParallelMode
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore.nn import Momentum
|
|
from mindspore.common import set_seed
|
|
|
|
from src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50
|
|
from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet
|
|
from src.config import config
|
|
from src.dataset import data_to_mindrecord_byte_image, create_maskrcnn_dataset
|
|
from src.lr_schedule import dynamic_lr
|
|
|
|
set_seed(1)
|
|
|
|
parser = argparse.ArgumentParser(description="MaskRcnn training")
|
|
parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False, help="If set it true, only create "
|
|
"Mindrecord, default is false.")
|
|
parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default is false.")
|
|
parser.add_argument("--do_train", type=ast.literal_eval, default=True, help="Do train or not, default is true.")
|
|
parser.add_argument("--do_eval", type=ast.literal_eval, default=False, help="Do eval or not, default is false.")
|
|
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
|
|
parser.add_argument("--pre_trained", type=str, default="", help="Pretrain file path.")
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
|
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
|
|
parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default is 0.")
|
|
args_opt = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
|
|
|
|
if __name__ == '__main__':
|
|
print("Start train for maskrcnn!")
|
|
if not args_opt.do_eval and args_opt.run_distribute:
|
|
rank = args_opt.rank_id
|
|
device_num = args_opt.device_num
|
|
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
gradients_mean=True)
|
|
init()
|
|
else:
|
|
rank = 0
|
|
device_num = 1
|
|
|
|
print("Start create dataset!")
|
|
|
|
# It will generate mindrecord file in args_opt.mindrecord_dir,
|
|
# and the file name is MaskRcnn.mindrecord0, 1, ... file_num.
|
|
prefix = "MaskRcnn.mindrecord"
|
|
mindrecord_dir = config.mindrecord_dir
|
|
mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
|
|
if rank == 0 and not os.path.exists(mindrecord_file):
|
|
if not os.path.isdir(mindrecord_dir):
|
|
os.makedirs(mindrecord_dir)
|
|
if args_opt.dataset == "coco":
|
|
if os.path.isdir(config.coco_root):
|
|
print("Create Mindrecord.")
|
|
data_to_mindrecord_byte_image("coco", True, prefix)
|
|
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
|
|
else:
|
|
raise Exception("coco_root not exits.")
|
|
else:
|
|
if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH):
|
|
print("Create Mindrecord.")
|
|
data_to_mindrecord_byte_image("other", True, prefix)
|
|
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
|
|
else:
|
|
raise Exception("IMAGE_DIR or ANNO_PATH not exits.")
|
|
while not os.path.exists(mindrecord_file+".db"):
|
|
time.sleep(5)
|
|
|
|
if not args_opt.only_create_dataset:
|
|
loss_scale = float(config.loss_scale)
|
|
|
|
# When create MindDataset, using the fitst mindrecord file, such as MaskRcnn.mindrecord0.
|
|
dataset = create_maskrcnn_dataset(mindrecord_file, batch_size=config.batch_size,
|
|
device_num=device_num, rank_id=rank)
|
|
|
|
dataset_size = dataset.get_dataset_size()
|
|
print("total images num: ", dataset_size)
|
|
print("Create dataset done!")
|
|
|
|
net = Mask_Rcnn_Resnet50(config=config)
|
|
net = net.set_train()
|
|
|
|
load_path = args_opt.pre_trained
|
|
if load_path != "":
|
|
param_dict = load_checkpoint(load_path)
|
|
if config.pretrain_epoch_size == 0:
|
|
for item in list(param_dict.keys()):
|
|
if not (item.startswith('backbone') or item.startswith('rcnn_mask')):
|
|
param_dict.pop(item)
|
|
load_param_into_net(net, param_dict)
|
|
|
|
loss = LossNet()
|
|
lr = Tensor(dynamic_lr(config, rank_size=device_num, start_steps=config.pretrain_epoch_size * dataset_size),
|
|
mstype.float32)
|
|
opt = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
|
|
weight_decay=config.weight_decay, loss_scale=config.loss_scale)
|
|
|
|
net_with_loss = WithLossCell(net, loss)
|
|
if args_opt.run_distribute:
|
|
net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale, reduce_flag=True,
|
|
mean=True, degree=device_num)
|
|
else:
|
|
net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale)
|
|
|
|
time_cb = TimeMonitor(data_size=dataset_size)
|
|
loss_cb = LossCallBack(rank_id=rank)
|
|
cb = [time_cb, loss_cb]
|
|
if config.save_checkpoint:
|
|
ckptconfig = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * dataset_size,
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
save_checkpoint_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/')
|
|
ckpoint_cb = ModelCheckpoint(prefix='mask_rcnn', directory=save_checkpoint_path, config=ckptconfig)
|
|
cb += [ckpoint_cb]
|
|
|
|
model = Model(net)
|
|
model.train(config.epoch_size, dataset, callbacks=cb)
|