You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
36 lines
1.5 KiB
36 lines
1.5 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# less required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, export, load_checkpoint, load_param_into_net
|
|
|
|
from src.unet.unet_model import UNet
|
|
|
|
parser = argparse.ArgumentParser(description='Export ckpt to air')
|
|
parser.add_argument('--ckpt_file', type=str, default="ckpt_unet_medical_adam-1_600.ckpt",
|
|
help='The path of input ckpt file')
|
|
parser.add_argument('--air_file', type=str, default="unet_medical_adam-1_600", help='The path of output air file')
|
|
args = parser.parse_args()
|
|
|
|
net = UNet(n_channels=1, n_classes=2)
|
|
# return a parameter dict for model
|
|
param_dict = load_checkpoint(args.ckpt_file)
|
|
# load the parameter into net
|
|
load_param_into_net(net, param_dict)
|
|
input_data = np.random.uniform(0.0, 1.0, size=[1, 1, 572, 572]).astype(np.float32)
|
|
export(net, Tensor(input_data), file_name=args.air_file, file_format='AIR')
|