You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
2.8 KiB
91 lines
2.8 KiB
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.ops import operations as P
|
|
from mindspore.train.model import Model
|
|
|
|
|
|
class CrossEntropyLoss(nn.Cell):
|
|
def __init__(self, reduction='mean'):
|
|
super(CrossEntropyLoss, self).__init__()
|
|
|
|
self.reduce_mean = P.ReduceMean()
|
|
self.cross_entropy = nn.SoftmaxCrossEntropyWithLogits()
|
|
self.reduction = reduction
|
|
|
|
def construct(self, logits, label):
|
|
loss = self.cross_entropy(logits, label)
|
|
if self.reduction == 'mean':
|
|
loss = self.reduce_mean(loss, (-1,))
|
|
return loss
|
|
|
|
|
|
class DatasetLenet():
|
|
def __init__(self, predict, label, length=3):
|
|
self.predict = predict
|
|
self.label = label
|
|
self.index = 0
|
|
self.length = length
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.index >= self.length:
|
|
raise StopIteration
|
|
self.index += 1
|
|
return self.predict, self.label
|
|
|
|
def reset(self):
|
|
self.index = 0
|
|
|
|
def get_dataset_size(self):
|
|
return 32
|
|
|
|
def get_repeat_count(self):
|
|
return 1
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=1, stride=1, pad_mode='valid',
|
|
has_bias=True, weight_init='ones', bias_init='ones')
|
|
self.reduce_mean = P.ReduceMean(keep_dims=False).set_strategy(((1, 1, 1, 8),))
|
|
self.flat = nn.Flatten()
|
|
|
|
def construct(self, inputs):
|
|
x = self.conv(inputs)
|
|
x = self.reduce_mean(x, -1)
|
|
x = self.flat(x)
|
|
return x
|
|
|
|
|
|
def test_bias_add():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8)
|
|
input_np = np.ones([16, 3, 32, 32]).astype(np.float32)
|
|
label_np = np.zeros([16, 2048]).astype(np.float32)
|
|
dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1)
|
|
net = Net()
|
|
loss = CrossEntropyLoss()
|
|
opt = nn.Momentum(learning_rate=0.01, momentum=0.9, params=net.get_parameters())
|
|
model = Model(network=net, loss_fn=loss, optimizer=opt)
|
|
model.train(epoch=1, train_dataset=dataset, dataset_sink_mode=False)
|