You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_dense_matmul.py

55 lines
1.9 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor, context
from mindspore.common.api import _executor
from mindspore.ops import operations as P
from ....train_step_wrap import train_step_with_loss_warp
class DenseMutMulNet(nn.Cell):
def __init__(self):
super(DenseMutMulNet, self).__init__()
self.fc1 = nn.Dense(128, 768, activation='relu')
self.fc2 = nn.Dense(128, 768, activation='relu')
self.fc3 = nn.Dense(128, 768, activation='relu')
self.fc4 = nn.Dense(768, 768, activation='relu')
self.relu4 = nn.ReLU()
self.relu5 = nn.ReLU()
self.transpose = P.Transpose()
self.matmul1 = P.MatMul()
self.matmul2 = P.MatMul()
def construct(self, x):
q = self.fc1(x)
k = self.fc2(x)
v = self.fc3(x)
k = self.transpose(k, (1, 0))
c = self.relu4(self.matmul1(q, k))
s = self.relu5(self.matmul2(c, v))
s = self.fc4(s)
return s
def test_dmnet_train_step():
context.reset_auto_parallel_context()
input_ = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
label = Tensor(np.zeros([32, 768]).astype(np.float32))
net = DenseMutMulNet()
net = train_step_with_loss_warp(DenseMutMulNet())
_executor.compile(net, input_, label)