You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_element_wise_function.py

307 lines
10 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):
net.set_auto_parallel()
_executor.compile(net, x, y, b)
def test_matmul_pow():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.pow = P.Pow().set_strategy(strategy2)
self.matmul2 = P.MatMul().set_strategy(strategy1)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.pow(out, 2.0)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2), ())
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_exp():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.exp = P.Exp().set_strategy(strategy2)
self.matmul2 = P.MatMul().set_strategy(strategy1)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.exp(out)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2),)
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_log():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.log = P.Log().set_strategy(strategy2)
self.matmul2 = P.MatMul().set_strategy(strategy1)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.log(out)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2),)
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_logical_not():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.logicalnot = P.LogicalNot().set_strategy(strategy2)
self.equal = P.Equal().set_strategy(strategy3)
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.equal(out, b)
out = self.logicalnot(out)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2),)
strategy3 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_cast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.cast = P.Cast().set_strategy(strategy2)
self.matmul2 = P.MatMul().set_strategy(strategy3)
def construct(self, x, y, b):
out = self.matmul(x, y)
b = self.cast(b, ms.float32)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((4, 2),)
strategy3 = ((1, 4), (4, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.int32)
compile_net(net, x, y, b)
def test_cast_before_mirror():
class Net(nn.Cell):
def __init__(self, strategy1):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.cast = P.Cast()
def construct(self, x, y, b):
out = self.matmul(x, y)
b = self.cast(b, ms.float32)
out = self.matmul(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, cast_before_mirror=True)
strategy1 = ((2, 2), (2, 2))
net = GradWrap(NetWithLoss(Net(strategy1)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float16)
compile_net(net, x, y, b)
def test_cast_before_mirror1():
class Net(nn.Cell):
def __init__(self, strategy1):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.cast = P.Cast()
def construct(self, x, y, b):
out = self.matmul(x, y)
b = self.cast(b, ms.float16)
out = self.matmul(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, cast_before_mirror=True)
strategy1 = ((2, 2), (2, 2))
net = GradWrap(NetWithLoss(Net(strategy1)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float16)
y = Tensor(np.ones([32, 64]), dtype=ms.float16)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_cast_before_mirror2():
class Net(nn.Cell):
def __init__(self, strategy1):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.cast = P.Cast()
def construct(self, x, y, b):
out = self.matmul(x, y)
b = self.cast(b, ms.float16)
out = self.matmul(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0, cast_before_mirror=False)
strategy1 = ((2, 2), (2, 2))
net = GradWrap(NetWithLoss(Net(strategy1)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float16)
y = Tensor(np.ones([32, 64]), dtype=ms.float16)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_cast_before_mirror3():
class Net(nn.Cell):
def __init__(self, strategy1):
super().__init__()
self.matmul = P.MatMul().set_strategy(strategy1)
self.cast = P.Cast()
def construct(self, x, y, b):
out = self.matmul(x, y)
b = self.cast(b, ms.float16)
out = self.matmul(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
net = GradWrap(NetWithLoss(Net(strategy1)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float16)
y = Tensor(np.ones([32, 64]), dtype=ms.float16)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_mul_two_cast():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.mul = P.Mul().set_strategy(strategy1)
self.mul2 = P.Mul().set_strategy(strategy2)
self.cast = P.Cast().set_strategy(strategy3)
self.cast2 = P.Cast().set_strategy(strategy3)
def construct(self, x, y, b):
out = self.mul(x, y)
out = self.mul2(out, b)
out = self.cast(out, ms.int32)
out = self.cast2(out, ms.bool_)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((8, 1), (8, 1))
strategy3 = ((8, 1),)
net = GradWrap(Net(strategy1, strategy2, strategy3))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([128, 32]), dtype=ms.float32)
b = Tensor(np.ones([128, 32]), dtype=ms.float32)
compile_net(net, x, y, b)