You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/mobilenetv2_quant/eval.py

86 lines
3.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluate MobilenetV2 on ImageNet"""
import os
import argparse
from mindspore import context
from mindspore import nn
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.compression.quant import QuantizationAwareTraining
from src.mobilenetV2 import mobilenetV2
from src.dataset import create_dataset
from src.config import config_ascend_quant
from src.config import config_gpu_quant
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--device_target', type=str, default=None, help='Run device target')
args_opt = parser.parse_args()
if __name__ == '__main__':
config_device_target = None
device_id = int(os.getenv('DEVICE_ID'))
if args_opt.device_target == "Ascend":
config_device_target = config_ascend_quant
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
device_id=device_id, save_graphs=False)
symmetric_list = [True, False]
elif args_opt.device_target == "GPU":
config_device_target = config_gpu_quant
context.set_context(mode=context.GRAPH_MODE, device_target="GPU",
device_id=device_id, save_graphs=False)
symmetric_list = [False, False]
else:
raise ValueError("Unsupported device target: {}.".format(args_opt.device_target))
# define fusion network
network = mobilenetV2(num_classes=config_device_target.num_classes)
# convert fusion network to quantization aware network
quantizer = QuantizationAwareTraining(bn_fold=True,
per_channel=[True, False],
symmetric=symmetric_list)
network = quantizer.quantize(network)
# define network loss
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# define dataset
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=False,
config=config_device_target,
device_target=args_opt.device_target,
batch_size=config_device_target.batch_size)
step_size = dataset.get_dataset_size()
# load checkpoint
if args_opt.checkpoint_path:
param_dict = load_checkpoint(args_opt.checkpoint_path)
not_load_param = load_param_into_net(network, param_dict)
if not_load_param:
raise ValueError("Load param into net fail!")
network.set_train(False)
# define model
model = Model(network, loss_fn=loss, metrics={'acc'})
print("============== Starting Validation ==============")
res = model.eval(dataset)
print("result:", res, "ckpt=", args_opt.checkpoint_path)
print("============== End Validation ==============")