You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/auto_parallel/onehot_model_parallel.py

152 lines
5.7 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
import numpy as np
import mindspore as ms
from mindspore.nn import Cell
from mindspore.ops import operations as P
from mindspore.common.tensor import Tensor
import mindspore.context as context
import mindspore.communication.management as distributedTool
device_num = 2
device_id = int(os.getenv('DEVICE_ID'))
rank_id = 0
def setup_module():
global device_num
global rank_id
np.random.seed(0)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_hccl=True)
context.set_context(enable_task_sink=True,
device_id=device_id)
context.set_context(enable_ir_fusion=True)
context.set_context(enable_loop_sink=False)
distributedTool.init()
device_num = distributedTool.get_group_size()
rank_id = distributedTool.get_rank()
context.set_auto_parallel_context(device_num=device_num,
global_rank=rank_id)
def teardown_module():
distributedTool.release()
class Onehot(Cell):
def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, strategy=None):
super(Onehot, self).__init__()
trans_stra = None
if strategy:
trans_stra = (strategy[0],)
self.onehot = P.OneHot().set_strategy(strategy=strategy)
self.depth = depth
self.on_value = Tensor(on_value, ms.float32)
self.off_value = Tensor(off_value, ms.float32)
self.transpose = P.Transpose().set_strategy(strategy=trans_stra)
self.sub = P.Sub().set_strategy(strategy=((1,1),(1,1)))
def construct(self, input, indices):
x = self.onehot(indices, self.depth, self.on_value, self.off_value)
x = self.transpose(x, (1,0))
x = self.sub(input, x)
return x
class DataGenerator():
def get_parallel_blocks(self, input_, strategy):
blocks = [input_]
i = 0
for stra in strategy:
temp = []
while len(blocks)>0:
block = blocks.pop(0)
temp.extend(np.split(block, stra, axis=i))
blocks.extend(temp)
i+=1
return blocks
def generate_data(self, shape):
data = np.random.rand(*shape)
return data
def input_data(self, shape):
data = (self.generate_data(shape)*2).astype(np.float32)
stra = [1]*len(shape)
stra[0] = device_num
datas = self.get_parallel_blocks(data, stra)
return Tensor(data), Tensor(datas[rank_id])
def label_data(self, shape, classes):
data = (self.generate_data(shape)*(classes-1)).astype(np.int32)
stra = [1]*len(shape)
stra[0] = device_num
datas = self.get_parallel_blocks(data, stra)
return Tensor(data),Tensor(datas[rank_id])
class OneHotFactory:
def __init__(self, batch_size, classes, on_value=1.0, off_value=0.0, axis=None, strategy=None):
dataGen = DataGenerator()
self.input_full, self.input_part = dataGen.input_data((classes, batch_size))
self.label_full, self.label_part = dataGen.label_data((batch_size,),classes)
self.depth = classes
self.on_value = on_value
self.off_value = off_value
self.axis = axis
self.strategy = strategy
def forward_mindspore_single_impl(self):
net = Onehot(axis=self.axis,
depth=self.depth,
on_value=self.on_value,
off_value=self.off_value)
out = net(self.input_full, self.label_full)
return out
def forward_mindspore_parallel_impl(self):
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net = Onehot(axis=self.axis,
depth=self.depth,
on_value=self.on_value,
off_value=self.off_value, strategy=self.strategy)
out = net.compile_and_run(self.input_full, self.label_full)
return out
def forward_cmp(self):
out_mindspore_single = self.forward_mindspore_single_impl().asnumpy()
context.reset_auto_parallel_context()
out_mindspore_parallel = self.forward_mindspore_parallel_impl().asnumpy()
context.reset_auto_parallel_context()
assert np.allclose(out_mindspore_single, out_mindspore_parallel, 0.0001, 0.0001)
def test_reid_onehot_forward_int32_128_depth1024_model_parallel():
fact = OneHotFactory(batch_size=128,
classes=1024,
on_value=1.000000,
off_value=0.000000,
axis=-1,
strategy=((1,device_num),(),()))
fact.forward_cmp()
def test_reid_onehot_forward_int32_1024_depth128_model_parallel():
fact = OneHotFactory(batch_size=1024,
classes=128,
on_value=1.000000,
off_value=0.000000,
axis=-1,
strategy=((1,device_num),(),()))
fact.forward_cmp()