You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
99 lines
4.3 KiB
99 lines
4.3 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""export checkpoint file into air models"""
|
|
|
|
import re
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, context
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
|
|
|
from src.td_config import td_student_net_cfg
|
|
from src.tinybert_model import BertModelCLS, BertModelNER
|
|
|
|
parser = argparse.ArgumentParser(description='tinybert task distill')
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
|
parser.add_argument("--ckpt_file", type=str, required=True, help="tinybert ckpt file.")
|
|
parser.add_argument("--file_name", type=str, default="tinybert", help="output file name.")
|
|
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
|
parser.add_argument("--device_target", type=str, default="Ascend",
|
|
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
|
|
parser.add_argument("--task_type", type=str, default="classification", choices=["classification", "ner"],
|
|
help="The type of the task to train.")
|
|
parser.add_argument("--task_name", type=str, default="", choices=["SST-2", "QNLI", "MNLI", "TNEWS", "CLUENER"],
|
|
help="The name of the task to train.")
|
|
args = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
|
if args.device_target == "Ascend":
|
|
context.set_context(device_id=args.device_id)
|
|
|
|
DEFAULT_NUM_LABELS = 2
|
|
DEFAULT_SEQ_LENGTH = 128
|
|
DEFAULT_BS = 32
|
|
task_params = {"SST-2": {"num_labels": 2, "seq_length": 64},
|
|
"QNLI": {"num_labels": 2, "seq_length": 128},
|
|
"MNLI": {"num_labels": 3, "seq_length": 128},
|
|
"TNEWS": {"num_labels": 15, "seq_length": 128},
|
|
"CLUENER": {"num_labels": 10, "seq_length": 128}}
|
|
|
|
class Task:
|
|
"""
|
|
Encapsulation class of get the task parameter.
|
|
"""
|
|
def __init__(self, task_name):
|
|
self.task_name = task_name
|
|
|
|
@property
|
|
def num_labels(self):
|
|
if self.task_name in task_params and "num_labels" in task_params[self.task_name]:
|
|
return task_params[self.task_name]["num_labels"]
|
|
return DEFAULT_NUM_LABELS
|
|
|
|
@property
|
|
def seq_length(self):
|
|
if self.task_name in task_params and "seq_length" in task_params[self.task_name]:
|
|
return task_params[self.task_name]["seq_length"]
|
|
return DEFAULT_SEQ_LENGTH
|
|
|
|
if __name__ == '__main__':
|
|
task = Task(args.task_name)
|
|
td_student_net_cfg.seq_length = task.seq_length
|
|
td_student_net_cfg.batch_size = DEFAULT_BS
|
|
if args.task_type == "classification":
|
|
eval_model = BertModelCLS(td_student_net_cfg, False, task.num_labels, 0.0, phase_type="student")
|
|
elif args.task_type == "ner":
|
|
eval_model = BertModelNER(td_student_net_cfg, False, task.num_labels, 0.0, phase_type="student")
|
|
else:
|
|
raise ValueError(f"Not support task type: {args.task_type}")
|
|
|
|
param_dict = load_checkpoint(args.ckpt_file)
|
|
new_param_dict = {}
|
|
for key, value in param_dict.items():
|
|
new_key = re.sub('tinybert_', 'bert_', key)
|
|
new_key = re.sub('^bert.', '', new_key)
|
|
new_param_dict[new_key] = value
|
|
|
|
load_param_into_net(eval_model, new_param_dict)
|
|
eval_model.set_train(False)
|
|
|
|
input_ids = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32))
|
|
token_type_id = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32))
|
|
input_mask = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32))
|
|
|
|
input_data = [input_ids, token_type_id, input_mask]
|
|
export(eval_model, *input_data, file_name=args.file_name, file_format=args.file_format)
|