You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
57 lines
2.4 KiB
57 lines
2.4 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
export quantization aware training network to infer `GEIR` backend.
|
|
"""
|
|
|
|
import argparse
|
|
import numpy as np
|
|
|
|
import mindspore
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.train.quant import quant
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
from src.config import mnist_cfg as cfg
|
|
from src.lenet_fusion import LeNet5 as LeNet5Fusion
|
|
|
|
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
|
|
parser.add_argument('--device_target', type=str, default="Ascend",
|
|
choices=['Ascend', 'GPU'],
|
|
help='device where the code will be implemented (default: Ascend)')
|
|
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
|
|
help='path where the dataset is saved')
|
|
parser.add_argument('--ckpt_path', type=str, default="",
|
|
help='if mode is test, must provide path where the trained ckpt file')
|
|
parser.add_argument('--dataset_sink_mode', type=bool, default=True,
|
|
help='dataset_sink_mode is False or True')
|
|
args = parser.parse_args()
|
|
|
|
if __name__ == "__main__":
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
|
|
|
# define fusion network
|
|
network = LeNet5Fusion(cfg.num_classes)
|
|
# convert fusion network to quantization aware network
|
|
network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000)
|
|
# load quantization aware network checkpoint
|
|
param_dict = load_checkpoint(args.ckpt_path)
|
|
load_param_into_net(network, param_dict)
|
|
|
|
# export network
|
|
inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32)
|
|
quant.export(network, inputs, file_name="lenet_quant", file_format='GEIR')
|