You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/kernel/common_utils_test.cc

135 lines
3.6 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "common/common_test.h"
#include "backend/kernel_compiler/common_utils.h"
namespace mindspore {
namespace kernel {
class CommonUtilTest : public UT::Common {
public:
CommonUtilTest() = default;
};
TEST_F(CommonUtilTest, BucketReduceSparseGradient1) {
// The indices is a vector and the grad is a tensor with shape (6, 2)
/* 0
* 0
* 1
* 1
* 0
* 3
*/
std::vector<int> indices{0, 0, 1, 1, 0, 3};
/* 0 1
* 2 3
* 4 5
* 6 7
* 8 9
* 10 11
*/
std::vector<float> grad;
for (int i = 0; i < 6 * 2; i++) {
grad.push_back(i);
}
std::vector<int> unique_indices(6);
std::vector<float> summed_grad(12);
std::vector<int> tmp_indices(6);
std::vector<float> tmp_grad(12);
SparseGradient unique_grad({summed_grad.data(), unique_indices.data(), 6});
SparseGradient workspace_grad({tmp_grad.data(), tmp_indices.data(), 6});
SparseGradient input_grad({grad.data(), indices.data(), 6});
ReduceSparseGradientParam param;
param.input_grad_ = &input_grad;
param.workspace_grad_ = &workspace_grad;
param.output_grad_ = &unique_grad;
param.max_index_ = 6;
param.value_stride_ = 2;
BucketReduceSparseGradient(param);
EXPECT_EQ(unique_grad.indices_size_, 3);
std::vector<int> expect_indices({0, 1, 3});
for (size_t i = 0; i < unique_grad.indices_size_; ++i) {
EXPECT_EQ(unique_grad.indices_[i], expect_indices[i]);
}
/* 10 13
* 10 12
* 10 11
*/
std::vector<int> expect_value({10, 13, 10, 12, 10, 11});
for (size_t i = 0; i < unique_grad.indices_size_ * 2; ++i) {
EXPECT_EQ(unique_grad.value_[i], expect_value[i]);
}
}
TEST_F(CommonUtilTest, BucketReduceSparseGradient2) {
// The indices is a vector and the grad is a tensor with shape (6, 2)
/* 0
* 0
* 1
* 1
* 0
* 6
*/
std::vector<int> indices{0, 0, 1, 1, 0, 6};
/* 0 1
* 2 3
* 4 5
* 6 7
* 8 9
* 10 11
*/
std::vector<float> grad;
for (int i = 0; i < 6 * 2; i++) {
grad.push_back(i);
}
std::vector<int> unique_indices(6);
std::vector<float> summed_grad(12);
std::vector<int> tmp_indices(6);
std::vector<float> tmp_grad(12);
SparseGradient unique_grad({summed_grad.data(), unique_indices.data(), 6});
SparseGradient workspace_grad({tmp_grad.data(), tmp_indices.data(), 6});
SparseGradient input_grad({grad.data(), indices.data(), 6});
ReduceSparseGradientParam param;
param.input_grad_ = &input_grad;
param.workspace_grad_ = &workspace_grad;
param.output_grad_ = &unique_grad;
param.max_index_ = 6;
param.value_stride_ = 2;
BucketReduceSparseGradient(param);
EXPECT_EQ(unique_grad.indices_size_, 2);
std::vector<int> expect_indices({0, 1});
for (size_t i = 0; i < unique_grad.indices_size_; ++i) {
EXPECT_EQ(unique_grad.indices_[i], expect_indices[i]);
}
/* 10 13
* 10 12
*/
std::vector<int> expect_value({10, 13, 10, 12});
for (size_t i = 0; i < unique_grad.indices_size_ * 2; ++i) {
EXPECT_EQ(unique_grad.value_[i], expect_value[i]);
}
}
} // namespace kernel
} // namespace mindspore