You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/device/cpu/cpu_kernel_runtime.cc

302 lines
12 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device/cpu/cpu_kernel_runtime.h"
#include <string>
#include <vector>
#include <memory>
#include <numeric>
#include <utility>
#include <functional>
#include <unordered_map>
#include "kernel/kernel.h"
#include "device/cpu/cpu_device_address.h"
#include "utils/context/ms_context.h"
#include "utils/config_manager.h"
#include "common/utils.h"
#include "session/anf_runtime_algorithm.h"
#include "session/session_basic.h"
#include "operator/ops.h"
namespace mindspore {
namespace device {
namespace cpu {
const size_t INIT_NODE_REF = 1;
namespace {
TypeId GetCPUSupportOutputTypeId(const TypeId type_id) {
TypeId support_type_id = type_id;
if (type_id == kNumberTypeUInt32) {
support_type_id = kNumberTypeInt32;
}
if (type_id == kNumberTypeFloat || type_id == kNumberTypeFloat16 || type_id == kNumberTypeFloat32 ||
type_id == kNumberTypeFloat64) {
support_type_id = kNumberTypeFloat32;
}
if (support_type_id != kNumberTypeInt32 && support_type_id != kNumberTypeFloat32) {
MS_LOG(EXCEPTION) << "Check output type failed.";
}
return support_type_id;
}
} // namespace
void CPUKernelRuntime::AssignKernelAddress(session::KernelGraph *kernel_graph) {
AssignValueNodeAddress(kernel_graph);
AssignInputNodeAddress(kernel_graph);
AssignKernelOutputAddress(kernel_graph);
resource_manager_.MemPlan(kernel_graph);
resource_manager_.MemMalloc(kernel_graph);
}
void CPUKernelRuntime::AssignValueNodeAddress(session::KernelGraph *kernel_graph) {
MS_EXCEPTION_IF_NULL(kernel_graph);
size_t type_size = sizeof(float);
for (auto &item_node : kernel_graph->graph_value_nodes()) {
MS_EXCEPTION_IF_NULL(item_node);
if (item_node->isa<ValueNode>()) {
auto value_node = item_node->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node);
auto node_value = value_node->value();
MS_EXCEPTION_IF_NULL(node_value);
if (!node_value->isa<tensor::Tensor>()) {
continue;
}
auto tensor = node_value->cast<TensorPtr>();
MS_EXCEPTION_IF_NULL(tensor);
std::vector<int> data_shape = tensor->shape();
size_t tensor_size = std::accumulate(data_shape.begin(), data_shape.end(), type_size, std::multiplies<size_t>());
DeviceAddressPtr address = CreateDeviceAddress(nullptr, tensor_size, kOpFormat_DEFAULT, kNumberTypeFloat32);
if (tensor->data_type() == kNumberTypeFloat32 || tensor->data_type() == kNumberTypeInt32) {
address->ptr_ = tensor->data_c(false);
} else {
address->ptr_ = resource_manager_.MemMalloc(tensor_size);
if (!address->SyncHostToDevice(data_shape, LongToSize(tensor->data().nbytes()), tensor->data_type(),
tensor->data_c(false))) {
MS_LOG(EXCEPTION) << "Value node sync host to device failed!";
}
}
address->ref_count_ = INIT_NODE_REF;
AnfAlgo::SetOutputAddr(address, 0, item_node.get());
}
}
}
void CPUKernelRuntime::AssignInputNodeAddress(const session::KernelGraph *kernel_graph) {
MS_EXCEPTION_IF_NULL(kernel_graph);
size_t type_size = sizeof(float);
for (auto &item : kernel_graph->inputs()) {
MS_EXCEPTION_IF_NULL(item);
if (item->isa<Parameter>()) {
auto output_num = AnfAlgo::GetOutputTensorNum(item);
for (size_t index = 0; index < output_num; index++) {
TypeId output_type_id = AnfAlgo::GetOutputDeviceDataType(item, index);
std::vector<size_t> fmt_shape = AnfAlgo::GetOutputDeviceShape(item, index);
size_t tensor_size =
fmt_shape.empty() ? type_size
: std::accumulate(fmt_shape.begin(), fmt_shape.end(), type_size, std::multiplies<size_t>());
auto format = AnfAlgo::GetOutputFormat(item, index);
auto address = CreateDeviceAddress(nullptr, tensor_size, format, output_type_id);
AnfAlgo::SetOutputAddr(address, index, item.get());
}
}
}
}
void CPUKernelRuntime::AssignKernelOutputAddress(const session::KernelGraph *kernel_graph) {
MS_EXCEPTION_IF_NULL(kernel_graph);
auto kernels = kernel_graph->execution_order();
for (auto &kernel : kernels) {
auto kernel_mod = AnfAlgo::GetKernelMod(kernel);
MS_EXCEPTION_IF_NULL(kernel_mod);
auto output_sizes = kernel_mod->GetOutputSizeList();
for (size_t i = 0; i < output_sizes.size(); ++i) {
auto output_format = AnfAlgo::GetOutputFormat(kernel, i);
auto output_type = AnfAlgo::GetOutputDeviceDataType(kernel, i);
AnfAlgo::SetOutputAddr(CreateDeviceAddress(nullptr, output_sizes[i], output_format, output_type), i,
kernel.get());
}
auto workspace_sizes = kernel_mod->GetWorkspaceSizeList();
for (size_t i = 0; i < workspace_sizes.size(); ++i) {
AnfAlgo::SetWorkspaceAddr(CreateDeviceAddress(nullptr, workspace_sizes[i], kOpFormat_DEFAULT, kNumberTypeFloat32),
i, kernel.get());
}
}
}
DeviceAddressPtr CPUKernelRuntime::CreateDeviceAddress(void *device_ptr, size_t device_size, const string &format,
TypeId type_id) {
return std::make_shared<CPUDeviceAddress>(device_ptr, device_size, format, type_id);
}
BaseRef CPUKernelRuntime::CreatTensorForOutput(const AnfNodePtr &input_node, size_t index,
const std::unordered_map<AnfNode *, tensor::TensorPtr> &input_map) {
MS_EXCEPTION_IF_NULL(input_node);
if (input_node->isa<CNode>() && AnfAlgo::GetCNodeName(input_node) == prim::kPrimMakeTuple->name()) {
auto cnode = input_node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
VectorRef ret;
for (size_t i = 1; i < cnode->inputs().size(); i++) {
auto item_with_index = AnfAlgo::VisitKernelWithReturnType(cnode->input(i), 0);
auto out = CreatTensorForOutput(item_with_index.first, item_with_index.second, input_map);
ret.push_back(out);
}
return ret;
}
if (input_node->isa<CNode>()) {
auto node = input_node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(node);
size_t output_size = AnfAlgo::GetOutputTensorNum(node);
if (index >= output_size) {
MS_LOG(EXCEPTION) << "Invalid input index " << index;
}
auto address = AnfAlgo::GetMutableOutputAddr(node, index);
MS_EXCEPTION_IF_NULL(address);
auto shape = AnfAlgo::GetOutputInferShape(node, index);
std::vector<int> temp_shape;
(void)temp_shape.insert(temp_shape.end(), shape.begin(), shape.end());
TypeId type_id = AnfAlgo::GetOutputInferDataType(node, index);
type_id = GetCPUSupportOutputTypeId(type_id);
tensor::TensorPtr tensor = std::make_shared<tensor::Tensor>(type_id, temp_shape);
MS_EXCEPTION_IF_NULL(tensor);
if (address->ref_count_ > 0 && address->ptr_ != nullptr) {
tensor->set_device_address(address);
} else {
address->ptr_ = tensor->data_c(true);
address->ref_count_ = INIT_NODE_REF;
}
tensor->set_dirty(false);
return tensor;
} else if (input_node->isa<Parameter>() || input_node->isa<ValueNode>()) {
auto iter = input_map.find(input_node.get());
if (iter != input_map.end()) {
return iter->second;
}
}
return BaseRef();
}
void CPUKernelRuntime::BindInputOutput(const session::KernelGraph *kernel_graph,
const std::vector<tensor::TensorPtr> &inputs, VectorRef *outputs) {
MS_EXCEPTION_IF_NULL(kernel_graph);
MS_EXCEPTION_IF_NULL(outputs);
// bind input ptr
auto &input_nodes = kernel_graph->inputs();
if (input_nodes.size() != inputs.size()) {
MS_LOG(EXCEPTION) << "Input size not equal to input node size!";
}
std::unordered_map<AnfNode *, tensor::TensorPtr> input_map;
size_t input_idx = 0;
size_t type_size = sizeof(float);
for (auto &item : input_nodes) {
MS_EXCEPTION_IF_NULL(item);
input_map[item.get()] = inputs[input_idx];
if (item->isa<Parameter>()) {
auto address = AnfAlgo::GetMutableOutputAddr(item, 0);
auto tensor = inputs[input_idx];
auto tensor_address = tensor->device_address();
MS_EXCEPTION_IF_NULL(address);
MS_EXCEPTION_IF_NULL(tensor);
if (tensor_address != nullptr && tensor_address != address) {
(void)tensor->data_sync();
}
std::vector<int> data_shape = tensor->shape();
size_t tensor_size = std::accumulate(data_shape.begin(), data_shape.end(), type_size, std::multiplies<size_t>());
if (tensor->data_type() == kNumberTypeFloat32 || tensor->data_type() == kNumberTypeInt32) {
address->ptr_ = tensor->data_c(false);
} else {
address->ptr_ = resource_manager_.MemMalloc(tensor_size);
if (!address->SyncHostToDevice(data_shape, LongToSize(tensor->data().nbytes()), tensor->data_type(),
tensor->data_c(false))) {
MS_LOG(EXCEPTION) << "Parameter node sync host to device failed!";
}
tensor->set_dirty(true);
}
address->ref_count_ = INIT_NODE_REF;
tensor->set_device_address(address);
}
input_idx++;
}
// new output and bind ptr
auto output_nodes = kernel_graph->outputs();
for (const auto &item : output_nodes) {
auto item_with_index = AnfAlgo::VisitKernelWithReturnType(item, 0, true);
auto out = CreatTensorForOutput(item_with_index.first, item_with_index.second, input_map);
outputs->push_back(std::move(out));
}
}
void CPUKernelRuntime::AddRuntimeAddress(DeviceAddress *address, std::vector<kernel::AddressPtr> *input_list) {
MS_EXCEPTION_IF_NULL(address);
kernel::AddressPtr input = std::make_shared<kernel::Address>();
MS_EXCEPTION_IF_NULL(input);
if (address->ptr_ == nullptr) {
address->ptr_ = resource_manager_.MemMalloc(address->size_);
}
MS_EXCEPTION_IF_NULL(address->ptr_);
input->addr = address->ptr_;
input->size = address->size_;
input_list->push_back(input);
}
void CPUKernelRuntime::IncreaseSummaryRefCount(const session::NamedSummaryOutputs &summary_outputs) {
resource_manager_.IncreaseSummaryRefCount(summary_outputs);
}
void CPUKernelRuntime::DecreaseSummaryRefCount(const session::NamedSummaryOutputs &summary_outputs) {
resource_manager_.DecreaseSummaryRefCount(summary_outputs);
}
bool CPUKernelRuntime::Run(session::KernelGraph *kernel_graph) {
MS_EXCEPTION_IF_NULL(kernel_graph);
resource_manager_.IncreaseAddressRefCount(kernel_graph);
auto kernels = kernel_graph->execution_order();
for (const auto &kernel : kernels) {
std::vector<kernel::AddressPtr> kernel_inputs;
std::vector<kernel::AddressPtr> kernel_workspaces;
std::vector<kernel::AddressPtr> kernel_outputs;
size_t input_num = AnfAlgo::GetInputTensorNum(kernel);
for (size_t i = 0; i < input_num; ++i) {
auto device_address = AnfAlgo::GetPrevNodeMutableOutputAddr(kernel, i).get();
MS_EXCEPTION_IF_NULL(device_address);
AddRuntimeAddress(device_address, &kernel_inputs);
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel);
for (size_t i = 0; i < output_num; ++i) {
auto device_address = AnfAlgo::GetMutableOutputAddr(kernel, i).get();
MS_EXCEPTION_IF_NULL(device_address);
AddRuntimeAddress(device_address, &kernel_outputs);
}
auto kernel_mod = AnfAlgo::GetKernelMod(kernel);
MS_EXCEPTION_IF_NULL(kernel_mod);
for (size_t i = 0; i < kernel_mod->GetWorkspaceSizeList().size(); ++i) {
auto device_address = AnfAlgo::GetWorkspaceAddr(kernel, i);
MS_EXCEPTION_IF_NULL(device_address);
AddRuntimeAddress(device_address, &kernel_workspaces);
}
auto ret = kernel_mod->Launch(kernel_inputs, kernel_workspaces, kernel_outputs, 0);
resource_manager_.DecreaseAddressRefCount(kernel);
if (!ret) {
MS_LOG(EXCEPTION) << "Launch kernel failed.";
}
}
return true;
}
} // namespace cpu
} // namespace device
} // namespace mindspore