You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
506 lines
20 KiB
506 lines
20 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""basic"""
|
|
import numpy as np
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore._checkparam import check_int_positive, check_bool
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops import functional as F
|
|
from mindspore.ops.functional import identity
|
|
from mindspore.ops.operations import _inner_ops as inner
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore._extends import cell_attr_register
|
|
from mindspore.common.api import ms_function
|
|
from mindspore import context
|
|
from ..cell import Cell
|
|
from .activation import get_activation
|
|
from ..._checkparam import Validator as validator
|
|
|
|
|
|
class Dropout(Cell):
|
|
r"""
|
|
Dropout layer for the input.
|
|
|
|
Randomly set some elements of the input tensor to zero with probability :math:`1 - keep\_prob` during training
|
|
using samples from a Bernoulli distribution.
|
|
|
|
Note:
|
|
Each channel will be zeroed out independently on every construct call.
|
|
|
|
The outputs are scaled by a factor of :math:`\frac{1}{keep\_prob}` during training so
|
|
that the output layer remains at a similar scale. During inference, this
|
|
layer returns the same tensor as the input.
|
|
|
|
This technique is proposed in paper `Dropout: A Simple Way to Prevent Neural Networks from Overfitting
|
|
<http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf>`_ and proved to be effective to reduce
|
|
over-fitting and prevents neurons from co-adaptation. See more details in `Improving neural networks by
|
|
preventing co-adaptation of feature detectors
|
|
<https://arxiv.org/pdf/1207.0580.pdf>`_.
|
|
|
|
Args:
|
|
keep_prob (float): The keep rate, greater than 0 and less equal than 1. E.g. rate=0.9,
|
|
dropping out 10% of input units. Default: 0.5.
|
|
seed0 (int): The first random seed. Default: 0.
|
|
seed1 (int): The second random seed. Default: 0.
|
|
dtype (:class:`mindspore.dtype`): Data type of input. Default: mindspore.float32.
|
|
|
|
Raises:
|
|
ValueError: If keep_prob is not in range (0, 1).
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - An N-D Tensor.
|
|
|
|
Outputs:
|
|
Tensor, output tensor with the same shape as the input.
|
|
|
|
Examples:
|
|
>>> x = Tensor(np.ones([20, 16, 50]), mindspore.float32)
|
|
>>> net = nn.Dropout(keep_prob=0.8)
|
|
>>> net(x)
|
|
"""
|
|
def __init__(self, keep_prob=0.5, seed0=0, seed1=0, dtype=mstype.float32):
|
|
super(Dropout, self).__init__()
|
|
if keep_prob <= 0 or keep_prob > 1:
|
|
raise ValueError("dropout probability should be a number in range (0, 1], but got {}".format(keep_prob))
|
|
validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
|
|
self.keep_prob = Tensor(keep_prob)
|
|
self.seed0 = seed0
|
|
self.seed1 = seed1
|
|
self.dtype = dtype
|
|
self.get_shape = P.Shape()
|
|
self.dropout_gen_mask = P.DropoutGenMask(Seed0=seed0, Seed1=seed1)
|
|
self.dropout_do_mask = P.DropoutDoMask()
|
|
self.cast = P.Cast()
|
|
self.is_gpu = context.get_context('device_target') in ["GPU"]
|
|
|
|
if self.is_gpu:
|
|
self.dropout = P.Dropout(keep_prob)
|
|
|
|
def construct(self, x):
|
|
if not self.training:
|
|
return x
|
|
|
|
if self.is_gpu:
|
|
out, _ = self.dropout(x)
|
|
return out
|
|
|
|
shape = self.get_shape(x)
|
|
dtype = P.DType()(x)
|
|
keep_prob = self.cast(self.keep_prob, dtype)
|
|
output = self.dropout_gen_mask(shape, keep_prob)
|
|
return self.dropout_do_mask(x, output, keep_prob)
|
|
|
|
def extend_repr(self):
|
|
str_info = 'keep_prob={}, Seed0={}, Seed1={}, dtype={}' \
|
|
.format(self.keep_prob, self.seed0, self.seed1, self.dtype)
|
|
return str_info
|
|
|
|
|
|
class Flatten(Cell):
|
|
r"""
|
|
Flatten layer for the input.
|
|
|
|
Flattens a tensor without changing dimension of batch size on the 0-th axis.
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - Tensor of shape :math:`(N, \ldots)` to be flattened.
|
|
|
|
Outputs:
|
|
Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is
|
|
the product of the remaining dimensions.
|
|
|
|
Examples:
|
|
>>> net = nn.Flatten()
|
|
>>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
|
|
>>> input.shape()
|
|
(2, 2, 2)
|
|
>>> net(input)
|
|
[[1.2 1.2 2.1 2.1]
|
|
[2.2 2.2 3.2 3.2]]
|
|
"""
|
|
def __init__(self):
|
|
super(Flatten, self).__init__()
|
|
|
|
def construct(self, x):
|
|
return F.reshape(x, (F.shape(x)[0], -1))
|
|
|
|
|
|
class Dense(Cell):
|
|
r"""
|
|
The fully connected layer.
|
|
|
|
Applies dense-connected layer for the input. This layer implements the operation as:
|
|
|
|
.. math::
|
|
\text{outputs} = \text{activation}(\text{inputs} * \text{kernel} + \text{bias}),
|
|
|
|
where :math:`\text{activation}` is the activation function passed as the activation
|
|
argument (if passed in), :math:`\text{activation}` is a weight matrix with the same
|
|
data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector
|
|
with the same data type as the inputs created by the layer (only if has_bias is True).
|
|
|
|
Args:
|
|
in_channels (int): The number of channels in the input space.
|
|
out_channels (int): The number of channels in the output space.
|
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
|
|
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
|
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
|
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
|
|
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
|
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
|
|
|
|
Raises:
|
|
ValueError: If weight_init or bias_init shape is incorrect.
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
|
|
|
|
Outputs:
|
|
Tensor of shape :math:`(N, out\_channels)`.
|
|
|
|
Examples:
|
|
>>> net = nn.Dense(3, 4)
|
|
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
|
|
>>> net(input)
|
|
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
|
|
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
|
|
"""
|
|
@cell_attr_register(attrs=['has_bias', 'activation'])
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
weight_init='normal',
|
|
bias_init='zeros',
|
|
has_bias=True,
|
|
activation=None):
|
|
super(Dense, self).__init__()
|
|
self.in_channels = check_int_positive(in_channels)
|
|
self.out_channels = check_int_positive(out_channels)
|
|
self.has_bias = check_bool(has_bias)
|
|
|
|
if isinstance(weight_init, Tensor):
|
|
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
|
|
weight_init.shape()[1] != in_channels:
|
|
raise ValueError("weight_init shape error")
|
|
|
|
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
|
|
|
if self.has_bias:
|
|
if isinstance(bias_init, Tensor):
|
|
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
|
|
raise ValueError("bias_init shape error")
|
|
|
|
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
|
|
|
self.matmul = P.MatMul(transpose_b=True)
|
|
self.bias_add = P.BiasAdd()
|
|
|
|
self.activation = get_activation(activation)
|
|
self.activation_flag = self.activation is not None
|
|
|
|
def construct(self, x):
|
|
output = self.matmul(x, self.weight)
|
|
if self.has_bias:
|
|
output = self.bias_add(output, self.bias)
|
|
if self.activation_flag:
|
|
return self.activation(output)
|
|
return output
|
|
|
|
def extend_repr(self):
|
|
str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \
|
|
.format(self.in_channels, self.out_channels, self.weight, self.has_bias)
|
|
if self.has_bias:
|
|
str_info = str_info + ', bias={}'.format(self.bias)
|
|
|
|
if self.activation_flag:
|
|
str_info = str_info + ', activation={}'.format(self.activation)
|
|
|
|
return str_info
|
|
|
|
|
|
class ClipByNorm(Cell):
|
|
r"""
|
|
Clips tensor values to a maximum :math:`L_2`-norm.
|
|
|
|
The output of this layer remains the same if the :math:`L_2`-norm of the input tensor
|
|
is not greater than the argument clip_norm. Otherwise the tensor will be normalized as:
|
|
|
|
.. math::
|
|
\text{output}(X) = \frac{\text{clip_norm} * X}{L_2(X)},
|
|
|
|
where :math:`L_2(X)` is the :math:`L_2`-norm of :math:`X`.
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - Tensor of shape N-D.
|
|
- **clip_norm** (Tensor) - A scalar Tensor of shape :math:`()` or :math:`(1)` and of
|
|
the same type as the input Tensor.
|
|
|
|
Outputs:
|
|
Tensor, clipped tensor with the same shape as the input.
|
|
|
|
Examples:
|
|
>>> net = nn.ClipByNorm()
|
|
>>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
|
|
>>> clip_norm = Tensor(np.array([100]).astype(np.float32))
|
|
>>> net(input, clip_norm)
|
|
|
|
"""
|
|
def __init__(self):
|
|
super(ClipByNorm, self).__init__()
|
|
self.reduce_sum = P.ReduceSum(keep_dims=True)
|
|
self.select_ = P.Select()
|
|
self.greater_ = P.Greater()
|
|
self.axis = ()
|
|
self.cast = P.Cast()
|
|
self.zero = Tensor(np.array([0.0]).astype(np.float32))
|
|
self.sqrt = P.Sqrt()
|
|
self.max_op = P.Maximum()
|
|
self.shape = P.Shape()
|
|
self.reshape = P.Reshape()
|
|
self.fill = P.Fill()
|
|
self.expand_dims = P.ExpandDims()
|
|
self.dtype = P.DType()
|
|
|
|
@ms_function
|
|
def construct(self, x, clip_norm):
|
|
"""add ms_function decorator for pynative mode"""
|
|
mul_x = F.square(x)
|
|
l2sum = self.cast(self.reduce_sum(mul_x, self.axis), mstype.float32)
|
|
cond = self.greater_(l2sum, self.zero)
|
|
ones_ = self.fill(self.dtype(cond), self.shape(cond), 1.0)
|
|
|
|
l2sum_safe = self.select_(cond, l2sum, self.cast(ones_, self.dtype(l2sum)))
|
|
l2norm = self.select_(cond, self.sqrt(l2sum_safe), l2sum)
|
|
|
|
intermediate = x * clip_norm
|
|
max_norm = self.max_op(l2norm, clip_norm)
|
|
values_clip = self.cast(intermediate, mstype.float32) / self.expand_dims(max_norm, -1)
|
|
values_clip = self.reshape(values_clip, self.shape(x))
|
|
values_clip = identity(values_clip)
|
|
return values_clip
|
|
|
|
|
|
class Norm(Cell):
|
|
"""
|
|
Computes the norm of vectors, currently including Euclidean norm, i.e., :math:`L_2`-norm.
|
|
|
|
Args:
|
|
axis (tuple): The axis over which to compute vector norms. Default: ().
|
|
keep_dims (bool): If True, the axis indicated in `axis` are kept with size 1. Otherwise,
|
|
the dimensions in `axis` are removed from the output shape. Default: False.
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - Tensor which is not empty.
|
|
|
|
Outputs:
|
|
Tensor, output tensor with dimensions in 'axis' reduced to 1 will be returned if 'keep_dims' is True;
|
|
otherwise a Tensor with dimensions in 'axis' removed is returned.
|
|
|
|
Examples:
|
|
>>> net = nn.Norm(axis=0)
|
|
>>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
|
|
>>> net(input)
|
|
"""
|
|
def __init__(self, axis=(), keep_dims=False):
|
|
super(Norm, self).__init__()
|
|
self.axis = axis
|
|
self.keep_dims = keep_dims
|
|
self.reduce_sum = P.ReduceSum(True)
|
|
self.sqrt = P.Sqrt()
|
|
self.squeeze = P.Squeeze(self.axis)
|
|
|
|
def construct(self, x):
|
|
x = self.sqrt(self.reduce_sum(F.square(x), self.axis))
|
|
|
|
if not self.keep_dims:
|
|
x = self.squeeze(x)
|
|
return x
|
|
|
|
def extend_repr(self):
|
|
str_info = 'axis={}, keep_dims={}'.format(self.axis, self.keep_dims)
|
|
return str_info
|
|
|
|
|
|
class OneHot(Cell):
|
|
"""
|
|
Returns a one-hot tensor.
|
|
|
|
The locations represented by indices in argument 'indices' take value on_value,
|
|
while all other locations take value off_value.
|
|
|
|
Note:
|
|
If the input indices is rank :math:`N`, the output will have rank :math:`N+1`. The new
|
|
axis is created at dimension `axis`.
|
|
|
|
Args:
|
|
axis (int): Features x depth if axis == -1, depth x features
|
|
if axis == 0. Default: -1.
|
|
depth (int): A scalar defining the depth of the one hot dimension. Default: 1.
|
|
on_value (float): A scalar defining the value to fill in output[i][j]
|
|
when indices[j] = i. Default: 1.0.
|
|
off_value (float): A scalar defining the value to fill in output[i][j]
|
|
when indices[j] != i. Default: 0.0.
|
|
dtype (:class:`mindspore.dtype`): Data type of 'on_value' and 'off_value', not the
|
|
data type of indices. Default: mindspore.float32.
|
|
|
|
Inputs:
|
|
- **indices** (Tensor) - A tensor of indices of data type mindspore.int32 and arbitrary shape.
|
|
|
|
Outputs:
|
|
Tensor, the one-hot tensor of data type 'dtype' with dimension at 'axis' expanded to 'depth' and filled with
|
|
on_value and off_value.
|
|
|
|
Examples:
|
|
>>> net = nn.OneHot(depth=4, axis=1)
|
|
>>> indices = Tensor([[1, 3], [0, 2]], dtype=mindspore.int32)
|
|
>>> net(indices)
|
|
[[[0. 0.]
|
|
[1. 0.]
|
|
[0. 0.]
|
|
[0. 1.]]
|
|
[[1. 0.]
|
|
[0. 0.]
|
|
[0. 1.]
|
|
[0. 0.]]]
|
|
"""
|
|
def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, dtype=mstype.float32):
|
|
super(OneHot, self).__init__()
|
|
self.onehot = P.OneHot(axis)
|
|
self.depth = depth
|
|
self.on_value = Tensor(on_value, dtype)
|
|
self.off_value = Tensor(off_value, dtype)
|
|
|
|
def construct(self, indices):
|
|
return self.onehot(indices, self.depth, self.on_value, self.off_value)
|
|
|
|
|
|
class Pad(Cell):
|
|
"""
|
|
Pads the input tensor according to the paddings and mode.
|
|
|
|
Args:
|
|
paddings (tuple): The shape of parameter `paddings` is (N, 2). N is the rank of input data. All elements of
|
|
paddings are int type. For `D` th dimension of input, paddings[D, 0] indicates how many sizes to be
|
|
extended ahead of the `D` th dimension of the input tensor, and paddings[D, 1] indicates how many sizes to
|
|
be extended behind of the `D` th dimension of the input tensor.
|
|
mode (string): Specifies padding mode. The optional values are "CONSTANT", "REFLECT", "SYMMETRIC".
|
|
Default: "CONSTANT".
|
|
|
|
Inputs:
|
|
- ** input_x** (Tensor) - The input tensor.
|
|
|
|
Outputs:
|
|
Tensor, the tensor after padding.
|
|
|
|
- If `mode` is "CONSTANT", it fill the edge with 0, regardless of the values of the `input_x`.
|
|
If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
|
|
Outputs is [[0,0,0,0,0,0,0],[0,0,1,2,3,0,0],[0,0,4,5,6,0,0],[0,0,7,8,9,0,0],[0,0,0,0,0,0,0]].
|
|
- If 'mode` is "REFLECT", it uses a way of symmetrical copying throught the axis of symmetry to fill in,
|
|
symmetry. If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
|
|
Outputs is [[6,5,4,5,6,5,4],[3,2,1,2,3,2,1],[6,5,4,5,6,5,4],[9,8,7,8,9,8,7],[6,5,4,5,6,5,4]].
|
|
- If 'mode' is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
|
|
according to the symmetry axis, except that it includes the symmetry axis. If the `input_x`
|
|
is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is
|
|
[[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]].
|
|
|
|
Examples:
|
|
>>> from mindspore import Tensor
|
|
>>> from mindspore.ops import operations as P
|
|
>>> import mindspore.nn as nn
|
|
>>> import numpy as np
|
|
>>> class Net(nn.Cell):
|
|
>>> def __init__(self):
|
|
>>> super(Net, self).__init__()
|
|
>>> self.pad = nn.Pad(paddings=((1,1),(2,2)), mode="CONSTANT")
|
|
>>> def construct(self, x):
|
|
>>> return self.pad(x)
|
|
>>> x = np.random.random(size=(2, 3)).astype(np.float32)
|
|
>>> pad = Net()
|
|
>>> ms_output = pad(Tensor(x))
|
|
"""
|
|
|
|
def __init__(self, paddings, mode="CONSTANT"):
|
|
super(Pad, self).__init__()
|
|
self.mode = mode
|
|
self.paddings = paddings
|
|
validator.check_string('mode', self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"], self.cls_name)
|
|
if not isinstance(paddings, tuple):
|
|
raise TypeError('Paddings must be tuple type.')
|
|
for item in paddings:
|
|
if len(item) != 2:
|
|
raise ValueError('The shape of paddings must be (n, 2).')
|
|
if mode == "CONSTANT":
|
|
self.pad = P.Pad(self.paddings)
|
|
else:
|
|
self.paddings = Tensor(np.array(self.paddings))
|
|
self.pad = P.MirrorPad(mode=mode)
|
|
|
|
def construct(self, x):
|
|
if self.mode == "CONSTANT":
|
|
x = self.pad(x)
|
|
else:
|
|
x = self.pad(x, self.paddings)
|
|
return x
|
|
|
|
|
|
class Unfold(Cell):
|
|
"""
|
|
Extract patches from images.
|
|
The input tensor must be a 4-D tensor and the data format is NCHW.
|
|
|
|
Args:
|
|
ksizes (Union[tuple[int], list[int]]): The size of sliding window, should be a tuple or list of int,
|
|
and the format is [1, ksize_row, ksize_col, 1].
|
|
strides (Union[tuple[int], list[int]]): Distance between the centers of the two consecutive patches,
|
|
should be a tuple or list of int, and the format is [1, stride_row, stride_col, 1].
|
|
rates (Union[tuple[int], list[int]]): In each extracted patch, the gap between the corresponding dim
|
|
pixel positions, should be a tuple or list of int, and the format is [1, rate_row, rate_col, 1].
|
|
padding (str): The type of padding algorithm, is a string whose value is "same" or "valid",
|
|
not case sensitive. Default: "valid".
|
|
|
|
- same: Means that the patch can take the part beyond the original image, and this part is filled with 0.
|
|
|
|
- valid: Means that the patch area taken must be completely contained in the original image.
|
|
|
|
Inputs:
|
|
- **input_x** (Tensor) - A 4-D tensor whose shape is [in_batch, in_depth, in_row, in_col] and
|
|
data type is int8, float16, uint8.
|
|
|
|
Outputs:
|
|
Tensor, a 4-D tensor whose data type is same as 'input_x',
|
|
and the shape is [out_batch, out_depth, out_row, out_col], the out_batch is same as the in_batch.
|
|
|
|
Examples:
|
|
>>> net = Unfold(ksizes=[1, 2, 2, 1], strides=[1, 1, 1, 1], rates=[1, 1, 1, 1])
|
|
>>> image = Tensor(np.ones([1, 1, 3, 3]), dtype=mstype.float16)
|
|
>>> net(image)
|
|
Tensor ([[[[1, 1] [1, 1]] [[1, 1], [1, 1]] [[1, 1] [1, 1]], [[1, 1], [1, 1]]]],
|
|
shape=(1, 4, 2, 2), dtype=mstype.float16)
|
|
"""
|
|
def __init__(self, ksizes, strides, rates, padding="valid"):
|
|
super(Unfold, self).__init__()
|
|
self.extract_image_patches = inner.ExtractImagePatches(ksizes, strides, rates, padding)
|
|
self.transpose = P.Transpose()
|
|
self.format_NHWC = (0, 2, 3, 1)
|
|
self.format_NCHW = (0, 3, 1, 2)
|
|
|
|
def construct(self, input_x):
|
|
x_transpose = self.transpose(input_x, self.format_NHWC)
|
|
ret = self.extract_image_patches(x_transpose)
|
|
ret_transpose = self.transpose(ret, self.format_NCHW)
|
|
return ret_transpose
|