You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
5.7 KiB
183 lines
5.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
Test util functions used in distribution classes.
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mindspore.nn.cell import Cell
|
|
from mindspore import context
|
|
from mindspore import dtype
|
|
from mindspore import Tensor
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.nn.probability.distribution._utils.utils import set_param_type, \
|
|
cast_to_tensor, CheckTuple, CheckTensor
|
|
|
|
def test_set_param_type():
|
|
"""
|
|
Test set_param_type function.
|
|
"""
|
|
tensor_fp16 = Tensor(0.1, dtype=dtype.float16)
|
|
tensor_fp32 = Tensor(0.1, dtype=dtype.float32)
|
|
tensor_fp64 = Tensor(0.1, dtype=dtype.float64)
|
|
tensor_int32 = Tensor(0.1, dtype=dtype.int32)
|
|
array_fp32 = np.array(1.0).astype(np.float32)
|
|
array_fp64 = np.array(1.0).astype(np.float64)
|
|
array_int32 = np.array(1.0).astype(np.int32)
|
|
|
|
dict1 = {'a': tensor_fp32, 'b': 1.0, 'c': tensor_fp32}
|
|
dict2 = {'a': tensor_fp32, 'b': 1.0, 'c': tensor_fp64}
|
|
dict3 = {'a': tensor_int32, 'b': 1.0, 'c': tensor_int32}
|
|
dict4 = {'a': array_fp32, 'b': 1.0, 'c': tensor_fp32}
|
|
dict5 = {'a': array_fp32, 'b': 1.0, 'c': array_fp64}
|
|
dict6 = {'a': array_fp32, 'b': 1.0, 'c': array_int32}
|
|
dict7 = {'a': 1.0}
|
|
dict8 = {'a': 1.0, 'b': 1.0, 'c': 1.0}
|
|
dict9 = {'a': tensor_fp16, 'b': tensor_fp16, 'c': tensor_fp16}
|
|
dict10 = {'a': tensor_fp64, 'b': tensor_fp64, 'c': tensor_fp64}
|
|
dict11 = {'a': array_fp64, 'b': array_fp64, 'c': tensor_fp64}
|
|
|
|
ans1 = set_param_type(dict1, dtype.float16)
|
|
assert ans1 == dtype.float32
|
|
|
|
with pytest.raises(TypeError):
|
|
set_param_type(dict2, dtype.float32)
|
|
|
|
ans3 = set_param_type(dict3, dtype.float16)
|
|
assert ans3 == dtype.float32
|
|
ans4 = set_param_type(dict4, dtype.float16)
|
|
assert ans4 == dtype.float32
|
|
|
|
with pytest.raises(TypeError):
|
|
set_param_type(dict5, dtype.float32)
|
|
with pytest.raises(TypeError):
|
|
set_param_type(dict6, dtype.float32)
|
|
|
|
ans7 = set_param_type(dict7, dtype.float32)
|
|
assert ans7 == dtype.float32
|
|
ans8 = set_param_type(dict8, dtype.float32)
|
|
assert ans8 == dtype.float32
|
|
ans9 = set_param_type(dict9, dtype.float32)
|
|
assert ans9 == dtype.float16
|
|
ans10 = set_param_type(dict10, dtype.float32)
|
|
assert ans10 == dtype.float32
|
|
ans11 = set_param_type(dict11, dtype.float32)
|
|
assert ans11 == dtype.float32
|
|
|
|
def test_cast_to_tensor():
|
|
"""
|
|
Test cast_to_tensor.
|
|
"""
|
|
with pytest.raises(ValueError):
|
|
cast_to_tensor(None, dtype.float32)
|
|
with pytest.raises(TypeError):
|
|
cast_to_tensor(True, dtype.float32)
|
|
with pytest.raises(TypeError):
|
|
cast_to_tensor({'a': 1, 'b': 2}, dtype.float32)
|
|
with pytest.raises(TypeError):
|
|
cast_to_tensor('tensor', dtype.float32)
|
|
|
|
ans1 = cast_to_tensor(Parameter(Tensor(0.1, dtype=dtype.float32), 'param'))
|
|
assert isinstance(ans1, Parameter)
|
|
ans2 = cast_to_tensor(np.array(1.0).astype(np.float32))
|
|
assert isinstance(ans2, Tensor)
|
|
ans3 = cast_to_tensor([1.0, 2.0])
|
|
assert isinstance(ans3, Tensor)
|
|
ans4 = cast_to_tensor(Tensor(0.1, dtype=dtype.float32), dtype.float32)
|
|
assert isinstance(ans4, Tensor)
|
|
ans5 = cast_to_tensor(0.1, dtype.float32)
|
|
assert isinstance(ans5, Tensor)
|
|
ans6 = cast_to_tensor(1, dtype.float32)
|
|
assert isinstance(ans6, Tensor)
|
|
|
|
class Net(Cell):
|
|
"""
|
|
Test class: CheckTuple.
|
|
"""
|
|
def __init__(self, value):
|
|
super(Net, self).__init__()
|
|
self.checktuple = CheckTuple()
|
|
self.value = value
|
|
|
|
def construct(self, value=None):
|
|
if value is None:
|
|
return self.checktuple(self.value, 'input')
|
|
return self.checktuple(value, 'input')
|
|
|
|
def test_check_tuple():
|
|
"""
|
|
Test CheckTuple.
|
|
"""
|
|
net1 = Net((1, 2, 3))
|
|
ans1 = net1()
|
|
assert isinstance(ans1, tuple)
|
|
|
|
with pytest.raises(TypeError):
|
|
net2 = Net('tuple')
|
|
net2()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net3 = Net((1, 2, 3))
|
|
ans3 = net3()
|
|
assert isinstance(ans3, tuple)
|
|
|
|
with pytest.raises(TypeError):
|
|
net4 = Net('tuple')
|
|
net4()
|
|
|
|
class Net1(Cell):
|
|
"""
|
|
Test class: CheckTensor.
|
|
"""
|
|
def __init__(self, value):
|
|
super(Net1, self).__init__()
|
|
self.checktensor = CheckTensor()
|
|
self.value = value
|
|
self.context = context.get_context('mode')
|
|
|
|
def construct(self, value=None):
|
|
value = self.value if value is None else value
|
|
if self.context == 0:
|
|
self.checktensor(value, 'input')
|
|
return value
|
|
return self.checktensor(value, 'input')
|
|
|
|
def test_check_tensor():
|
|
"""
|
|
Test CheckTensor.
|
|
"""
|
|
value = Tensor(0.1, dtype=dtype.float32)
|
|
net1 = Net1(value)
|
|
ans1 = net1()
|
|
assert isinstance(ans1, Tensor)
|
|
ans1 = net1(value)
|
|
assert isinstance(ans1, Tensor)
|
|
|
|
with pytest.raises(TypeError):
|
|
net2 = Net1('tuple')
|
|
net2()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net3 = Net1(value)
|
|
ans3 = net3()
|
|
assert isinstance(ans3, Tensor)
|
|
ans3 = net3(value)
|
|
assert isinstance(ans3, Tensor)
|
|
|
|
with pytest.raises(TypeError):
|
|
net4 = Net1('tuple')
|
|
net4()
|